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ABSTRACT 

The purpose of this paper is to show the details of matrix algebra, matrix factorization, 

definitions of upper and lower triangular matrices with several methods such as Doolittle 

method, Crout method, Choles method and examples of their application. We are aware of how 

important knowledge of matrix theory is, especially for those who take mathematics in 

whatever direction they study. Hence the greatest urge to write this paper with the hope that it 

will be useful to all those who need it.. 

Кeywords. matrix theory, matrix factorization, Doolittle method, Crout method, Choles 
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1.0 INTRODUCTION 

Definition 1.1. Let A be an nxm matrix and 𝜆 a real number. The scalar product of 𝜆 and A is 

denoted by 𝜆𝐴 and is an nxm matrix with components for each 𝑖 = 1,2. . 𝑛 and each 𝑗 =

1,2. . . 𝑚. 

Theorem 1.2. Let A, B and C be nxm 𝜆  and 𝜇 real numbers. The following specifications are 

valid. 

a) 𝐴 + 𝐵 = 𝐵 + 𝐴 

b) (𝐴 + 𝐵) + 𝐶 = 𝐴 + (𝐵 + 𝐶) 

c) 𝐴 + 0 = 0 + 𝐴 = 𝐴 

d) 𝐴 + (−𝐴) = (−𝐴) + 𝐴 = 0 

e) 𝜆(𝐴 + 𝐵) = 𝜆𝐴 + 𝜆𝐵 

f) (𝜆 + 𝜇)𝐴 = 𝜆𝐴 + 𝜇𝐴 

g) 𝜆(𝜇𝐴) = (𝜆𝜇)𝐴 

h) 1 ∙ 𝐴 = 𝐴 

Definition 1.3. In the form of a matrix, 

𝐴 = [

𝑎11 𝑎12 ⋯ 𝑎1𝑛

𝑎21 𝑎22 ⋯ 𝑎2𝑛

⋮ ⋮ ⋯ ⋮
𝑎𝑚1 𝑎𝑚2

⋯ 𝑎𝑚𝑛

] = [𝑎𝑖𝑗] 

is a rectangular arrangement of numbers. 

The i-th row of A  

[𝑎𝑖1 𝑎𝑖2 ⋯ 𝑎𝑖𝑛], 1 ≤ 𝑖 ≤ 𝑛 
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and the j-th column of A 

[

𝑎1𝑗

𝑎2𝑗

⋮
𝑎𝑚𝑗

]    1 ≤ 𝑗 ≤ 𝑛 

Definition 1.4. A matrix with m rows and n columns is called an mxn matrix or (𝑚, 𝑛) −matrix 

for short.  

Example 1.5. The following are matrices 

𝐴 = [
1 2 3
2 −2 4
0 −3 5

] ,     𝐵 = [1 5 −2],      𝐶 = [

3
−2
1
5

] ,   and       𝐷 = [
0 2
2 −1

] 

Here, they are matrices of type A;3𝑥3, B;1𝑥3, C; 4𝑥1 and D;2𝑥2. 

Definition 1.6. If the number of rows of the matrix is equal to the number of columns, i.e. if 

𝑚 = 𝑛, we have a square matrix of order n or shorter (𝑛) matrix. 

Example 1.7. 

𝐴 = [
1 2 −2
2 5 4
0 −2 6

]     and   𝐵 = [
𝑥 2 −2
2 𝑧 4
0 −2 𝑦

] 

for the matrices to be equal, it is necessary and sufficient to be 𝑥 = 1, 𝑦 = 6 and 𝑧 = 5. 

Definition 1.8. Quadrant matrices are distinguished from diagonal matrices in which all 

elements of different indices (𝑖 ≠ 𝑗) are equal to zero. 

[
 
 
 
 
𝑎11

0
0
⋅⋅
0

0
𝑎22

0
⋅⋅
0

0
0

𝑎33

⋅⋅
0

⋅
⋅
⋅
⋅⋅
⋅

⋅
⋅
⋅
⋅⋅
⋅

0
0
0
⋅⋅

𝑎𝑛𝑛]
 
 
 
 

 

It is said that the elements 𝑎11, 𝑎22, 𝑎33 ⋅⋅⋅ 𝑎𝑛𝑛 lie on the main diagonal of the matrix. 

Diagonal matrices in which all elements on the main diagonal are equal to each other (𝑎11 =

𝑎22 = 𝑎33 =⋅⋅⋅= 𝑎𝑛𝑛) are called scalar matrices, in particular, if 𝑎 = 1, the scalar matrix is 

called the unit matrix and is denoted by the letter E. 

𝐸 =

[
 
 
 
 
1
0
0
⋅⋅
0

0
1
0
⋅⋅
0

0
0
1
⋅⋅
0

⋅
⋅
⋅
⋅⋅
⋅

⋅
⋅
⋅
⋅⋅
⋅

0
0
0
⋅⋅
1]
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Definition 1.9. A matrix with all elements equal to zero is called a zero matrix and is denoted 

by 0. 

[
0 0 0
0 0 0
0 0 0

] = 0 

Definition 1.10. Two matrices A and B are equal, i.e. 𝐴 = 𝐵, if they have the same elements 

in the same position, i.e. they have the same number of rows and the same number of columns 

with identical elements. 

Example 1.11. 

[
2 1
6 9
4 7

] =

[
 
 
 4 − 2 5

5⁄

2 + 4 27
3⁄

1
3⁄ ∙ 12 (7) ∙ (1)]

 
 
 

 

2.0 OPERATIONS WITH MATRICES 

Definition 2.1. (Addition of matrices): Two matrices 𝐴 = [𝑎𝑖𝑗] and 𝐵 = [𝑏𝑖𝑗] can be added, 

if they have the same number of rows and the same number of columns. In that case, the sum 

matrix is 𝐶 = 𝐴 + 𝐵, i.e. 𝑐𝑖𝑗 = 𝑎𝑖𝑗 + 𝑏𝑖𝑗, 𝑖 = 1,2, … ,𝑚, 𝑗 = 1,2, … , 𝑛, it is calculated so that 

the corresponding elements of those matrices are added separately. 

Example 2.2.  

[
1 2 3
4 5 6
7 8 9

] + [
2 5 −3
3 −2 4
4 1 2

] = [
1 + 2 2 + 5 3 + (−3)
4 + 3 5 + (−2) 6 + 4
7 + 4 8 + 1 9 + 2

] = [
3 7 0
7 3 10
11 9 11

] 

The rule of adding two matrices is valid for any finite number of addends. 

Example 2.3. 

[
2
3
1
] + [

3
1
2
] + [

1
1
1
] = [

2 + 3 + 1
3 + 1 + 1
1 + 1 + 1

] = [
6
5
3
] 

The laws of commutation and association apply to the addition of matrices: 

𝐴 + 𝐵 = 𝐵 + 𝐴 

(𝐴 + 𝐵) + 𝐶 = 𝐴 + (𝐵 + 𝐶) 

Definition 2.4. (Subtraction of matrices) The difference of two matrices 𝐴 = [𝑎𝑖𝑗] and 𝐵 =

[𝑏𝑖𝑗]  of the same type (𝑚𝑥𝑛) is determined by subtracting the elements of the subtrahend from 

the corresponding elements of the minuemd. 

Example 2.5. Determine the difference of matrices 
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𝐴 = [
5 1 0
1 0 6
3 2 8

]        i        B = [
3 6 4
2 5 3
1 0 2

] 

𝐶 = 𝐴 − 𝐵 = [
5 − 3 1 − 6 0 − 4
1 − 2 0 − 5 6 − 3
3 − 1 2 − 0 8 − 2

] = [
2 −5 −4

−1 −5 3
2 2 6

] 

Definition 2.6. (The product of a matrix and a scalar): The product A α gives a matrix C, 

the elements of which are the products of the elements of the matrix A and the scalar α. 

Example 2.7.  

4 ∙ [
4 6
3 2
5 1

] = [
4 ∙ 4 4 ∙ 6
4 ∙ 3 4 ∙ 2
4 ∙ 5 4 ∙ 1

] = [
16 24
12 8
20 4

] 

Definition 2.8. (Multiplying a matrix by a matrix): The product AB of matrices A and B is 

defined only for the case when the number of columns of matrix A is equal to the number of 

rows of matrix B, so in the product AB the number of rows is always equal to the number of 

rows in the first factor A, while the number of columns is equal to the number of columns in 

the second factor B. 

If the matrix A is a row-matrix 

𝐴 = (𝑎1𝑎2 …𝑎𝑛) 

and matrix B matrix-column 

𝐵 = [

𝑏1

𝑏2

⋮
𝑏𝑛

] 

then it is 

𝐶 = 𝐴 ∙ 𝐵 = (𝑎1𝑎2 …𝑎𝑛) [

𝑏1

𝑏2

⋮
𝑏𝑛

] = [𝑎1𝑏1 + 𝑎2𝑏2 + ⋯+ 𝑎𝑏𝑏𝑛] 

Example 2.9. 

(1   2  4) [
2
3
5
] = [1 ∙ 2 + 2 ∙ 3 + 4 ∙ 5] = [28] 

The number a can be multiplied by any matrix 

[

𝑏1

𝑏2

𝑏3

] (𝑎1𝑎2𝑎3) = [

𝑏1𝑎1 𝑏1𝑎2 𝑏1𝑎3

𝑏2𝑎1 𝑏2𝑎2 𝑏2𝑎3

𝑏3𝑎1 𝑏3𝑎2 𝑏3𝑎3

] 
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In the general case, we proceed as follows: 

𝐴𝐵 = [
𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23
] [

𝑏11 𝑏12

𝑏21 𝑏22

𝑏31 𝑏32

] 

= [
𝑎11𝑏11 + 𝑎12𝑏21 + 𝑎13𝑏31 𝑎11𝑏12 + 𝑎12𝑏22 + 𝑎13𝑏32

𝑎21𝑏11 + 𝑎22𝑏21 + 𝑎23𝑏31 𝑎21𝑏12 + 𝑎22𝑏22 + 𝑎23𝑏32
] 

The procedure follows by multiplying all the elements of the first row of matrix A with the 

corresponding elements of the first column of matrix B and then adding these products together 

to obtain the first term of the product. Proceeding in the same way with the same row of matrix 

A and the longest column of matrix B, we get the second term of the product required by the 

first row. We proceed in the same way with the elements of the second row of the matrix A 

and the volume of the columns oft the matrix B, so we get the first and second terms of the 

second row of the product AB. 

The properties of matrix product are summarized in the following theorem. 

Theorem 2.10.   

a) A(BC) = (AB)C 

b) ImB = B and BIn = B    

c) A(B + D) = AB + AD 

d) μ(AB) = (μA)B = A(μB) 

Definition 2.11. 

If every 𝑗 = 2,3, . . . , 𝑛 and every 𝑖 = 1,2, . . . . 𝑗 − 1 and 𝑎𝑖𝑗 = 0 in an 𝑛𝑥𝑛 matrix A, the matrix 

A is called lower triangular matrix. 

In an 𝑛𝑥𝑛 matrix A, if every 𝑗 = 1,2, . . . , 𝑛 − 1 and every 𝑖 = 𝑗 + 1. .. and 𝑎𝑖𝑗 = 0, then the 

matrix A is called upper triangular matrix. 

Definition 2.12. If we fold matrix A around its main diagonal, its columns will become rows, 

and its rows will become columns. This new matrix, which is called the transposed matrix with 

respect to the matrix A, is denoted by 𝐴𝑇 = �̃�. In this way (𝑚, 𝑛) matrix A is transformed into 

(𝑛,𝑚) matrix 𝐴𝑇 = �̃�. 

𝐴 = [

𝑎11 𝑎12 ⋯ 𝑎1𝑛

𝑎21 𝑎22 ⋯ 𝑎2𝑛

⋮ ⋮ ⋯ ⋮
𝑎𝑚1 𝑎𝑚2

⋯ 𝑎𝑚𝑛

],   𝐴𝑇 = �̃� =  [

𝑎11 𝑎21 ⋯ 𝑎𝑚1

𝑎12 𝑎22 ⋯ 𝑎𝑚2

⋮ ⋮ ⋯ ⋮
𝑎1𝑛 𝑎2𝑛

⋯ 𝑎𝑚𝑛

] 

Theorem 2.13 

a) If we perform the transpose operation twice on the matrix A, the matrix A remains 

unchanged: 

(𝐴𝑇)𝑇 = 𝐴 
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b) The transposed matrix of the sum of two matrices is equal to the sum of the transposed 

matrices: 

(𝐴 + 𝐵)𝑇 = 𝐴𝑇 + 𝐵𝑇 

c) The determinant of the matrix A is equal to the determinant of the matrix 𝐴𝑇: 

 

𝑑𝑒𝑡𝐴 = 𝐴 = det 𝐴𝑇 = 𝐴𝑇 . 
d) The transposed matrix of the product of two matrices is equal to the product of 

transposed matrices taken in reverse order: 

 

(𝐴𝐵)𝑇 = 𝐵𝑇𝐴𝑇 

Example 2.14. 

𝐴 = [
2 6 4
3 5 1
4 2 3

] ⟹ 𝐴𝑇 = [
2 3 4
6 5 2
4 1 3

] 

Theorem 2.15. Let A and B be nxn matrices 

a) If all components in any row or column of A nxn are zero then it is 𝑑𝑒𝑡𝐴 = 0 

b) If the 𝐴𝑇 matrix is obtained from the matrix A (𝐸𝑖) ⟺)(𝐸𝑗) with 𝑗 ≠ 𝑖, then  

𝑑𝑒𝑡𝐴𝑇 = 𝑑𝑒𝑡𝐴 

c) If two of A are the same, detA=0. 

d) If the 𝐴𝑇 matrix is obtained from the A matrix (𝜆𝐸𝐼) → (𝐸𝑖) by the operation  

det(𝐴𝑇) = 𝜆𝑑𝑒𝑡𝐴 

e) det(𝐴𝐵) = det(𝐴) det(𝐵) 

Theorem 2.16. If the matrix A is a lower triangular or an upper triangular matrix 

det(𝐴) =∏𝑎𝑖𝑖

𝑛

𝑖=1

 

we can write the linear derlin system as 𝐴𝑥 = 𝑏 

Example 2.17. 

E1: x1 − 2x2 + 2x3 = 3 

E2:  2𝑥1 + 𝑥2 + 𝑥3 = 0 

E3:  x1 + 0 + x3 = −2 

[
1 −2 2
2 1 1
1 0 1

] [

𝑥1

𝑥2

𝑥3

] = [
3
0

−2
] 

(𝐸1 + 2𝐸2) → (𝐸1)       [
5 0 4
2 1 1
1 0 1

] [

𝑥1

𝑥2

𝑥3

] = [
3
0

−2
] 
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(𝐸1 − 5𝐸3) → (𝐸1)      [
0 0 −1
2 1 1
1 0 1

] [

𝑥1

𝑥2

𝑥3

] = [
13
0

−2
] 

(𝐸2 − 2𝐸3) → (𝐸2)      [
0 0 −1
0 1 −1
1 0 1

] [

𝑥1

𝑥2

𝑥3

] = [
13
4

−2
] 

(𝐸1 + 𝐸3) → (𝐸3)        [
0 0 −1
0 1 −1
1 0 0

] [

𝑥1

𝑥2

𝑥3

] = [
13
4
11

] 

(𝐸1 − 𝐸2) → (𝐸2)        [
0 0 −1
0 −1 0
1 0 0

] [

𝑥1

𝑥2

𝑥3

] = [
13
9
11

] 

𝑥3 = −13 , 𝑥2 = −9 , 𝑥1 = 11 

Another way we can follow is to add the B vector to the right of the A matrix to obtain the 

�̃�  𝑛x(𝑛 + 1) matrix.  

�̅� = [𝐴, 𝑏] = �̅� =  [

𝑎11 𝑎12 ⋯ 𝑎1𝑛 ⋮ 𝑏1

𝑎21 𝑎22 ⋯ 𝑎2𝑛 ⋮ 𝑏2

⋮ ⋮ … ⋮    ⋮ ⋮ 
𝑎𝑛1 𝑎𝑛2 ⋯ 𝑎𝑛𝑛 ⋮ 𝑏𝑛

] 

Let's solve the same ogre in this way. 

�̅� = [
1 −2 2 ⋮ 3
2 1 1 ⋮ 0
1 0     1 ⋮ −2

] 

(𝐸1 + 2𝐸2) → (𝐸1)           [
5 0 4 ⋮ 3
2 1 1 ⋮ 0
1 0     1 ⋮ −2

]   

(𝐸1 − 5𝐸3) → (𝐸1)          [
0 0 −1 ⋮ 13
2 1 1  ⋮ 0
1 0     1 ⋮ −2

]  

(𝐸2 − 2𝐸3) → (𝐸2)          [
0 0   −1 ⋮ 13
2 1 −1 ⋮ 0
1 0        0 ⋮ −2

]  

(𝐸1 + 𝐸3) → (𝐸3)          [
0 0   −1 ⋮ 13
0 1 −1 ⋮ 4
1 0        0 ⋮ 11

] 

(𝐸1 − 𝐸2) → (𝐸2)          [
0 0   −1 ⋮ 13
0 −1     0 ⋮ 9
1 0        0 ⋮ 11

] 

𝑥3 = −13 , 𝑥2 = −9 , 𝑥1 = 11 
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Definition 2.18. A square matrix is called symmetric if its elements, which lie symmetrically 

with respect to the main diagonal, are mutually equal. 

A matrix is cosimetric, if its elements are symmetrically positioned with respect to the main 

diagonal, equal in size and opposite in sign. 

Symmetric matrix 𝐴 = �̌� and cosimetric matrix 𝐴 = −�̌� 

Definition 2.19. A square matrix 𝐴−1 is called inverse with respect to a square matrix A, if 

𝐴𝐴−1 = 𝐴−1 = 𝐼 

where I is the unit matrix. 

Definition 2.20. If an A matrix does not have an inverse, the A matrix is called a singular 

matrix. 

Theorem 2.21. Let A and B be inverse matrices. The following specifications are valid. 

a) (𝐴−1)−1 = 𝐴 

b) (𝐴𝐵)−1 = 𝐵−1𝐴−1 

c) (𝐴𝑇)−1 = (𝐴−1)𝑇 

d) 𝐴𝑥 = 𝑏 → 𝑥 = 𝐴−1𝑏 

The procedure for calculating the inverse matrices: 

1) We calculate for the given matrix A the value of the determinant, i.e. 

Δ = det 𝐴 = 𝐴 

2) We transpose the given matrix A to obtain the matrix �̌�. 

3) For each element of the matrix �̌�, we calculate, row by row, the corresponding cofactors 

or algebraic complements, i.e. subdeterminants, which we obtain by crossing out the 

column and the row in which the element in question lies, and we take the plus and 

minus signs as cofactors alternately, regardless of the sign of the element for which we 

calculate the cofactor. 

4) In the matrix A, we replace each element with the corresponding cofactor. 

5) If we divide each member of the thus obtained matrix by Δ = det 𝐴, we will get the 

required matrix 𝐴−1 inverse with respect to the given matrix A. 

6) Let's do an experiment: it must be 

𝐴𝐴−1 = 𝐴−1 = 𝐼 = 𝑢𝑛𝑖𝑡 𝑚𝑎𝑡𝑟𝑖𝑥 = 1 

Example 2.22. 

A square matrix is given 

𝐴 = [

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

] = [
1 2 3
5 5 6
7 8 9

] 

Determine the inverse matrix 𝐴−1 
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Solution: 

1) We count Δ = det 𝐴 = 𝐴 

Δ = [
1 2 3
5 5 6
7 8 9

] − [
1 2 3
5 5 6
7 8 9

] + [
1 2 3
5 5 6
7 8 9

] 

Δ = 1(5 ∙ 9 − 6 ∙ 8) − 2(5 ∙ 9 − 6 ∙ 7) + 3(5 ∙ 8 − 7 ∙ 5) 

Δ = 1(45 − 48) − 2(45 − 42) + 3(40 − 35) 

Δ = −3 − 6 + 15 = 6 ≠ 0 

The given matrix A is regular, so it has an inverse matrix 𝐴−1 

2) We transpose the matrix A: 

𝐴𝑇 = [

𝑎11 𝑎21 𝑎31

𝑎12 𝑎22 𝑎32

𝑎13 𝑎23 𝑎33

] = [
1 5 7
2 5 8
3 6 9

] 

3) We calculate the cofactors for matrix  �̌�. 

𝐴11 = |
𝑎22 𝑎32

𝑎23 𝑎33
| = + |

5 8
6 9

| = +(5 ∙ 9 − 6 ∙ 8) = 45 − 48 = −3 

 

𝐴21 = − |
𝑎12 𝑎32

𝑎13 𝑎33
| = − |

2 8
3 9

| = −(2 ∙ 9 − 3 ∙ 8) = −(18 − 24) = −(−6) = 6 

 

𝐴31 = |
𝑎12 𝑎22

𝑎13 𝑎23
| = |

2 5
3 6

| = (2 ∙ 6 − 3 ∙ 5) = (12 − 15) = −3 

 

𝐴12 = − |
𝑎21 𝑎31

𝑎23 𝑎33
| = − |

5 7
6 9

| = −(5 ∙ 9 − 6 ∙ 7) = −(45 − 42) = −3 

 

 𝐴22 = |
𝑎11 𝑎31

𝑎13 𝑎33
| = |

1 7
3 9

| = (1 ∙ 9 − 3 ∙ 7) = 9 − 21 = −12 

 

𝐴32 = − |
𝑎11 𝑎21

𝑎13 𝑎23
| = − |

1 5
3 6

| = −(1 ∙ 6 − 3 ∙ 5) = −(6 − 15) = −(−9) = 9 

 

𝐴13 = |
𝑎21 𝑎31

𝑎22 𝑎32
| = |

5 7
5 8

| = (5 ∙ 8 − 5 ∙ 7) = (40 − 35) = 5 

 

𝐴23 = − |
𝑎11 𝑎31

𝑎12 𝑎32
| = − |

1 7
2 8

| = −(1 ∙ 8 − 2 ∙ 7) = −(8 − 14) = −(−6) = 6 

 

𝐴33 = |
𝑎11 𝑎21

𝑎12 𝑎22
| = |

1 5
2 5

| = (1 ∙ 5 − 2 ∙ 5) = 5 − 10 = −5 

4) We get it 
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[
−3 6 −3
−3 −12 9
5 6 −5

] 

5) We divide each element by 𝛥 = 𝑑𝑒𝑡𝐴 = 𝐴 = 6.  

𝐴𝑇 =

[
 
 
 
 
 
−3

6

6

6

−3

6
−3

6

−12

6

9

6
5

6

6

6

−5

6 ]
 
 
 
 
 

 

We get: 

𝐴𝑇 =

[
 
 
 
 
 
−1

2
1

−1

2
−1

2
−2

3

2
5

6
1

−5

6 ]
 
 
 
 
 

 

6) Let's do an experiment: 

𝐴𝐴𝑇 = [
1 2 3
5 5 6
7 8 9

]

[
 
 
 
 
 
−1

2
1

−1

2
−1

2
−2

3

2
5

6
1

−5

6 ]
 
 
 
 
 

= 𝑇ℎ𝑒 𝑙𝑎𝑤 𝑜𝑓 𝑚𝑎𝑡𝑟𝑖𝑥 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 

= [
1 0 0
0 1 0
0 0 1

] = 𝑅 = 1 

3.0 FORWARD SUBSTITATION 

𝑎11𝑥1                                            = 𝑏1 

𝑎21𝑥1 + 𝑎22𝑥2                           = 𝑏2 

⋮                ⋮                                     ⋮   

𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 + ⋯+ 𝑎𝑛𝑛𝑥𝑛 = 𝑏𝑛 

 

1) 𝑎11𝑥1 = 𝑏1 ⟹ 𝑥1 =
𝑏1

𝑎1
 

2) 𝑎21𝑥1 + 𝑎22𝑥2 = 𝑏2 ⟹ 𝑥2 =
(𝑏2−𝑎21𝑥1)

𝑎22
 

                  ⋮       
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              ∑𝑎𝑖𝑗𝑥𝑗 = 𝑏𝑖 ⟹ 𝑏𝑖 =

𝑖

𝑗=1

 ∑𝑎𝑖𝑗𝑥𝑗

𝑖

𝑗=1

+ 𝑎𝑖𝑖𝑥𝑖 ⟹ 𝑥𝑖 =
(𝑏𝑖 − ∑ 𝑎𝑖𝑗𝑥𝑗

𝑖−1
𝑗=1 )

𝑎𝑖𝑖
 

Repeating the following from 𝑖 =  2 to n 

𝑥𝑖 =
(𝑏𝑖 − ∑ 𝑎𝑖𝑗𝑥𝑗

𝑖−1
𝑗=1 )

𝑎𝑖𝑖
 

Provided that 𝑎𝑖𝑖 ≠ 0 for every 𝑖 = 1,2, . . . 𝑛. 

3.2. Reverse substitution 

𝑎11𝑥1 + 𝑎12𝑥2 + ⋯+ 𝑎1𝑛𝑥𝑛 = 𝑏1 

                 𝑎22𝑥2 + ⋯+ 𝑎2𝑛𝑥𝑛 = 𝑏2 

                                                            ⋮   

                                            𝑎𝑛𝑛𝑥𝑛 = 𝑏𝑛 

𝑎𝑛𝑛𝑥𝑛 = 𝑏𝑛 ⟹ 𝑥𝑛 =
𝑏𝑛

𝑎𝑛𝑛
 

𝑎𝑛−1,𝑛−1𝑥𝑛−1 + 𝑎𝑛−1,𝑛𝑥𝑛 = 𝑏𝑛−1 ⟹ 𝑥𝑛−1 =
𝑏𝑛−1 − 𝑎𝑛−1,𝑛𝑥𝑛

𝑎𝑛−1,𝑛−1
 

∑𝑎𝑖𝑗𝑥𝑗 = 𝑏𝑖 ⇒ ∑ 𝑎𝑖𝑗𝑥𝑗 + 𝑎𝑖𝑖𝑥𝑖𝑖 = 𝑏𝑖 ⇒ 𝑥𝑖 =
(𝑏𝑖 − ∑ 𝑎𝑖𝑗𝑥𝑗

𝑛
𝑗=𝑖+1 )

𝑎𝑖𝑖

𝑛

𝑗=𝑖+1

𝑛

𝑗=1

 

𝑥𝑛 =
𝑏𝑛

𝑎𝑛𝑛
 

Let the following repeat from 𝑖 = (𝑛 − 1) to 1, with steps of -1 each. 

𝑥𝑖 =
(𝑏𝑖 − ∑ 𝑎𝑖𝑗𝑥𝑗)

𝑛
𝑗=𝑖+1

𝑎𝑖𝑖
 

Example 3.2.1. 

𝐸1: 2,00𝑥1 + 2,00𝑥2 + 3,00𝑥3 + 3,00𝑥4 = 1,00 

𝐸2: 2,00𝑥1 + 3,00𝑥2 + 3,00𝑥3 + 2,00𝑥4 = 1,00 

𝐸3: 5,00𝑥1 + 3,00𝑥2 + 7,00𝑥3 + 9,00𝑥4 = 1,00 

𝐸4: 3,00𝑥1 + 2,00𝑥2 + 4,00𝑥3 + 7,00𝑥4 = 1,00 

 

(𝐸2 − 1,00𝐸1) → (𝐸2) , (𝐸3 − 2,50𝐸1) → (𝐸3) , (𝐸4 − 1,50𝐸1) → (𝐸4) ,   
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𝐸1: 2,00𝑥1 + 2,00𝑥2 + 3,00𝑥3 + 3,00𝑥4 = 1,00 

𝐸2:                   1,00𝑥2                    − 1,00𝑥4 = 0,00 

  𝐸3 :              − 2,00𝑥2 − 0,50𝑥3 + 1,50𝑥4 = −1,50 

  𝐸4 :              − 1,00𝑥2 − 0,50𝑥3 + 2,50𝑥4 = −0,50 

 

(𝐸3 + 2,00𝐸2) → (𝐸3) , (𝐸4 + 1,00𝐸2) → (𝐸4) ,   

𝐸1: 2,00𝑥1 + 2,00𝑥2 + 3,00𝑥3 + 3,00𝑥4 = 1,00 

𝐸2:                   1,00𝑥2                    − 1,00𝑥4 = 0,00 

   𝐸3 :                                − 0,50𝑥3 − 0,50𝑥4 = −1,50 

   𝐸4 :                                − 0,50𝑥3 + 1,50𝑥4 = −0,50 

  (𝐸4 − 1,00𝐸3) → (𝐸4) 

𝐸1: 2,00𝑥1 + 2,00𝑥2 + 3,00𝑥3 + 3,00𝑥4 = 1,00 

𝐸2:                   1,00𝑥2                    − 1,00𝑥4 = 0,00 

   𝐸3 :                                − 0,50𝑥3 − 0,50𝑥4 = −1,50 

 𝐸4:                                                        2,00𝑥4 = 1,00 

 

the rest can be solved by reverse substitution. 

𝐸1: 2,00𝑥1 + 2,00𝑥2 + 3,00𝑥3 + 3,00𝑥4 = 1,00 

𝐸2:                   1,00𝑥2                    − 1,00𝑥4 = 0,00 

   𝐸3 :                                − 0,50𝑥3 − 0,50𝑥4 = −1,50 

𝐸4:                                                                 𝑥4 =
1,00

2,00
 

 

𝐸1: 2,00𝑥1 + 2,00𝑥2 + 3,00𝑥3 + 3,00𝑥4 = 1,00 

                                       𝐸2:                   1,00𝑥2               − 1,00 ∙
1,00

2,00
= 0,00 

  𝐸3 :                       − 0,50𝑥3 − 0,50 ∙
1,00

2,00
= −1,50 

𝐸4:                                                                 𝑥4 =
1,00

2,00
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𝐸1: 2,00𝑥1 + 2,00𝑥2 + 3,00𝑥3 + 3,00𝑥4 = 1,00 

                                      𝐸2:                   1,00𝑥2                 − 0,50 = 0,00 

𝐸3 :                                  − 0,50𝑥3 − 0,25 = −1,50 

𝐸4:                                                                 𝑥4 =
1,00

2,00
 

𝐸1: 2,00𝑥1 + 2,00𝑥2 + 3,00𝑥3 + 3,00𝑥4 = 1,00 

                                      𝐸2:                   1,00𝑥2                                       = 0,50 

𝐸3 :                                                 − 0,50𝑥3 = −1,25 

𝐸4:                                                                 𝑥4 = 0,50 

𝐸1: 2,00𝑥1 + 2,00 ∙ 0,50 + 3,00 ∙ 2,50 + 3,00 ∙ 0,50 = 1,00 

                                      𝐸2:                                                                 𝑥2 = 0,50 

𝐸3:                                                                𝑥3 = 2,50 

𝐸4:                                                                 𝑥4 = 0,50 

𝐸1: 2,00𝑥1 + 1,00 + 7,50 + 1,50              = 1,00 

                                      𝐸2:                                                                 𝑥2 = 0,50 

𝐸3:                                                                𝑥3 = 2,50 

𝐸4:                                                                 𝑥4 = 0,50 

𝐸1:                             2,00𝑥1             = 1,00 − 10,00 

                                     𝐸2:                                                                 𝑥2 = 0,50 

𝐸3:                                                                𝑥3 = 2,50 

𝐸4:                                                                 𝑥4 = 0,50 

𝐸1:                                                              𝑥1 = −4,50 

                                      𝐸2:                                                                 𝑥2 = 0,50 

𝐸3:                                                                𝑥3 = 2,50 

𝐸4:                                                                 𝑥4 = 0,50 

 

Another way to solve a linear equivalent system is the Gaussian elimination method of 

inverse substitution, which we explained earlier. 

3.3. Gauss-Jordan Method 
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The Gauss-Jordan method, which is a slightly different form of the Gaussian method, is a 

frequently used method that is worth focusing on. In this method, the components above the 

diagonal are also zeroed in between creating zeros below the diagonal. Therefore, there is no 

need for reverse substitution, and the solution is obtained by dividing the vector remaining on 

the right side after the elimination operations into the corresponding diagonal components on 

the left. If it is formulated more mathematically, as in the equivalent Gauss elimination method, 

it is used to eliminate xii from the equivalents 𝐸𝑖+1, 𝐸𝑖+2, …… . ,  𝐸𝑛, as well as eliminating xi 

from the equivalents 𝐸1, 𝐸2, … . . 𝐸𝑖−1. It is used to do. 

After the reduction process, the generalized matrix [𝐴, 𝑏] is reduced to.  

[𝐴, 𝑏] =

[
 
 
 
 
 
 𝑎1,1

(1)
…     ……………… .…… . 𝑎1,𝑛+1

(𝑛+1)

     𝑎2,2
(2)

… ……………………𝑎2,𝑛+1
(𝑛+1)

…………………… . .

                           𝑎𝑛−1,𝑛−1
(𝑛−1)

…… . . 𝑎𝑛−1,𝑛+1
(𝑛+1)

                                  𝑎𝑛,𝑛
(𝑛)

…… . . 𝑎𝑛,𝑛+1
(𝑛)

]
 
 
 
 
 
 

 

Most of the time, when using the Gauss-Jordan method, the diagonal components are also set 

to 1 during the reduction process. This makes it a coefficient matrix. When this is done, it 

means that the right-side vector has been reduced to the solution vector. All the "pivoting" 

process that will be explained later for Gauss can also be done for Gauss-Jordan. 

Example 3.3.1. 

𝐸1: 2,00𝑥1 + 2,00𝑥2 + 3,00𝑥3 + 3,00𝑥4 = 1,00 

𝐸2: 2,00𝑥1 + 3,00𝑥2 + 3,00𝑥3 + 2,00𝑥4 = 1,00 

𝐸3: 5,00𝑥1 + 3,00𝑥2 + 7,00𝑥3 + 9,00𝑥4 = 1,00 

𝐸4: 3,00𝑥1 + 2,00𝑥2 + 4,00𝑥3 + 7,00𝑥4 = 1,00 

[

2,00 2,00 3,00 3,00 ⋮ 1,00
2,00 3,00 3,00 2,00 ⋮ 1,00
5,00
3,00

3,00
2,00

7,00 9,00
4,00 7,00

⋮
⋮

1,00
1,00

]            (0,50𝐸1) → (𝐸1) 

 

[

1,00 1,00 1,50 1,50 ⋮ 0,50
2,00 3,00 3,00 2,00 ⋮ 1,00
5,00
3,00

3,00
2,00

7,00 9,00
4,00 7,00

⋮
⋮

1,00
1,00

]    

(𝐸2 − 2,00𝐸1) → (𝐸2)

(𝐸3 − 5,00𝐸1) → (𝐸3)

(𝐸4 − 3,00𝐸1) → (𝐸4)
 

[

1,00 1,00 1,50 1,50 ⋮ 0,50
0,00 1,00 0,00 −1,00 ⋮ 0,00
0,00
0,00

−2,00
−1,00

−0,50 1,50
−0,50 2,50

⋮
⋮

−1,50
−0,50

]    

(𝐸3 + 2,00𝐸2) → (𝐸3)

(𝐸4 + 1,00𝐸2) → (𝐸4)

(𝐸1 − 1,00𝐸2) → (𝐸1)
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[

1,00 1,00 1,50 1,50 ⋮ 0,50
0,00 1,00 0,00 −1,00 ⋮ 0,00
0,00
0,00

0,00
0,00

−0,50 −0,50
−0,50 −1,50

⋮
⋮

−1,50
−0,50

]  (−2,00𝐸3) → (𝐸3 )    

[

1,00 1,00 1,50 1,50 ⋮ 0,50
0,00 1,00 0,00 −1,00 ⋮ 0,00
0,00
0,00

0,00
0,00

1,00 1,00
−0,50 1,50

⋮
⋮

3,00
−0,50

]    

(𝐸4 + 0,50𝐸2) → (𝐸4)

(𝐸1 − 1,50𝐸3) → (𝐸1)

(𝐸2 − 0,00𝐸3) → (𝐸2)
 

 

[

1,00 1,00 1,50 1,50 ⋮ 0,50
0,00 1,00 0,00 −1,00 ⋮ 0,00
0,00
0,00

0,00
0,00

1,00 1,00
0,00 2,00

⋮
⋮

3,00
1,00

] (0,50𝐸4) → (𝐸4)     

[

1,00 1,00 1,50 1,50 ⋮ 0,50
0,00 1,00 0,00 −1,00 ⋮ 0,00
0,00
0,00

0,00
0,00

1,00 1,00
0,00 1,00

⋮
⋮

3,00
0,50

]    

(𝐸3 − 1,00𝐸4) → (𝐸3)

(𝐸2 + 1,00𝐸1) → (𝐸2)

(𝐸1 − 1,00𝐸3) → (𝐸1)
 

Comparison of Gauss and Gauss-Jordan methods in terms of elementary operations gives the 

following table. In the table, n is the number of unknowns. 

Method   Addition-Subtraction Multiplication                Sharing 

Gauss    𝑛(𝑛 − 1)(2𝑛 + 5)/6 𝑛(𝑛 − 1)(2𝑛 + 5)/6 𝑛(𝑛 + 1)/2 

Gauss-Jordan 𝑛(𝑛 − 1)(𝑛 + 1)/2 𝑛(𝑛 − 1)(𝑛 + 1)/2 𝑛(𝑛 + 1)/2 

4.0 LEADING PRINCIPAL SUBMATRICES 

Definition 4.1.  Substituting the matrix 𝐴𝑖 into its 𝑛𝑥𝑛 inverse, where 𝑖 = 1,2, . . . , 𝑛, the 

necessary and sufficient conditions for the Gauss elimination method to be applied without the 

necessity of row swapping are that all the first fundamental submatrices of the matrix A are 

non-singular. 

𝐴1 = [𝑎11] = 𝐴1
(1)

⇒ 𝑑𝑒𝑡𝐴1 = 𝑑𝑒𝑡𝐴1
(1)

 

𝐴2 = [
𝑎11 𝑎12

𝑎21 𝑎22
] 

𝑑𝑒𝑡𝐴2 = 𝑑𝑒𝑡𝐴2
(2)

 

𝑑𝑒𝑡 ([
1 0

−𝑚21 1
] [

𝑎11 𝑎12

𝑎21 𝑎22
]) = 𝑑𝑒𝑡 [

1 0
−𝑚21 1

] 𝑑𝑒𝑡 [
𝑎11 𝑎12

𝑎21 𝑎22
] 

𝑑𝑒𝑡𝐴2 = 𝑑𝑒𝑡𝐴2
(2)

= 𝑎22
(2)

𝑑𝑒𝑡𝐴1 
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𝐴3 = [

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

] → 𝐴3
(3)

= [

𝑎11
(1)

𝑎12
(1)

𝑎13
(1)

0 𝑎22
(2)

𝑎23
(2)

0 0 𝑎33
(3)

] 

[
1 0 0
0 1 0
0 −𝑚32 1

] [
1 0 0

−𝑚21 1 0
−𝑚31 0 1

] [

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

] = 𝐴3
(3)

 

𝑑𝑒𝑡𝐴3 = 𝑑𝑒𝑡𝐴3
(3)

= 𝑎33
(3)

𝑎22
(2)

𝑎11
(1)

= 𝑎3
(3)

𝑑𝑒𝑡𝐴2
(2)

= 𝑎33
(3)

𝑑𝑒𝑡𝐴2 

𝑑𝑒𝑡𝐴𝑘 = 𝑑𝑒𝑡𝐴𝑘
(𝑘)

= 𝑎𝑘𝑘
(𝑘)

𝑑𝑒𝑡𝐴𝑘−1
(𝑘−1)

= 𝑎𝑘𝑘
(𝑘)

𝑑𝑒𝑡𝐴𝑘−1 

Example 4.2. 

𝐴 = [

2 2 3 3
2 3 3 2
5
3

3
2

7
4

9
7

] →

det 𝐴1 = |2| = 2 ≠ 0

 det 𝐴2 = |
2 2
2 3

| = 2 ≠ 0

det 𝐴3 = |
2 2 3
2 3 3
5 3 7

| = −1 ≠ 0

det 𝐴4 = [

2 2 3 3
2 3 3 2
5
3

3
2

7
4

9
7

] = det 𝐴 = 6 ≠ 0

 

As I have seen, all the first fundamental submatrices of this matrix are non-singular. Here, the 

necessary and sufficient conditions for the first basic sub-matrix to be non-singular are that the 

𝑎𝑖𝑖
(𝑖)

 for each 𝑖 = 1,2,3. . . , 𝑛 are non-zero. if 𝑎𝑘𝑘
(𝑘)

= 0 then 𝑑𝑒𝑡𝐴𝑘 = 0 

Definition 4.3: Let A 𝑛𝑥𝑛 matrix. If inequality |𝑎𝑖𝑖| > ∑ |𝑎𝑖𝑗|
𝑛
𝑗=1 occurs for every 𝑖 =

1,2,3. . . , 𝑛, matrix A is called "strict diagonal dominant matrix". 

Example 4.4:  

𝐴 = [

4 −2 −1 0
0 −6 3 −2
1
3

0
−2

5
−1

−1
7

] →

|𝑎11| = 4 > |−2| + |−1| + |0| = 3
|𝑎22| = −6 > |0| + |3| + |−1| = 5
|𝑎33| = 5 > |1| + |0| + |−1| = 2

|𝑎44| = 7 > |3| + |−2| + |−1| = 6

 

A is the exact diagonal dominant matrix. 

Theorem 4.5: If matrix A is a strictly diagonal dominant matrix of 𝑘𝑥𝑘, then 𝐴𝑘−1 is a 

strictly diagonal dominant matrix. 

Proof 4.5:  

∀𝑖 = 1,2,3, … . , 𝑘 for |𝑎𝑖𝑖| > ∑ |𝑎𝑖𝑗|
𝑘
𝑗=1
≠𝑖

 the feature is valid. 
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∀𝑖 = 1,2,3, … . , 𝑘 − 1 for |𝑎𝑖𝑖| > ∑|𝑎𝑖𝑗|

𝑘

𝑖=1

⇒ 𝐴𝑘−1  the exact diagonal is the dominant matrix 

5.0 MATRIX FACTORIZATION 

Theorem 5.1: Let's consider an 𝑛𝑥𝑛 matrix A, all whose first principal submatrices are non-

singular. Matrix A, where L is a lower triangular matrix and U is an upper triangular matrix, 

can be factored as 𝐴 = 𝐿𝑈, and there is only one way to do this. 

[

𝑎11 𝑎12 ⋯ 𝑎1𝑛

𝑎21 𝑎22 ⋯ 𝑎2𝑛

⋮ ⋮ ⋯ ⋮
𝑎𝑚1 𝑎𝑚2

⋯ 𝑎𝑚𝑛

] [

𝑥1
𝑥2

⋮
𝑥𝑛

] = [

𝑏1

𝑏2

⋮
𝑏𝑛

] 

𝐴𝑋 = 𝑏 

𝐴 = 𝐿1𝑈1 = 𝐿2𝑈2 

det 𝐿1 = det 𝐿2 = 1 where is det 𝐴 = det 𝑈1 = det 𝑈2, A non-singulardet 𝑈1 = det 𝑈2 ≠ 0, 

so there is 𝑈1
−1 and 𝑈2

−1.  

In other words, 𝑈1 and 𝑈2 are also non-singular. 

𝐿1𝑈1 = 𝐿2𝑈2 ⇒ 𝑈1𝑈2
−1 = 𝐿1

−1𝐿2 

𝑈1𝑈2
−1 = 𝐿1

−1𝐿2 = 𝐼 

𝑈1 = 𝑈2, 𝐿1 = 𝐿2 are obtained. 

Then the factorization of A is unique, with U being an upper triangular matrix and L being a 

lower triangular matrix. 

6.0 DOOLITTLE METHOD  

𝐴 = [

𝑎11 𝑎12 ⋯ 𝑎1𝑛

𝑎21 𝑎22 ⋯ 𝑎2𝑛

⋮ ⋮ ⋯ ⋮
𝑎𝑛1 𝑎𝑛2

⋯ 𝑎𝑛𝑛

] =

[
 
 
 
 
1
𝑙21

𝑙31

⋮
𝑙𝑛1

0
1
𝑙32

⋮
𝑙𝑛2

⋯
⋱
1
⋱
…

⋯
⋯
⋱
1

𝑙𝑛,𝑛+1

0
⋮
⋮
0
1]
 
 
 
 

[
 
 
 
 
𝑈11 𝑈12 ⋯ ⋯ 𝑈1𝑛

0 𝑈22 ⋯ ⋯ 𝑈2𝑛

⋮
⋮
0

⋱
⋮
⋯

⋱ ⋱ ⋮
⋱ ⋱ ⋮

⋯ 0 𝑈𝑛𝑛 ]
 
 
 
 

 

By matrix-matrix multiplication 

The first row of matrix L is completely known and has only one non-0 component. Let's 

multiply the first row of the L matrix by all the columns of the U matrix. 

𝑎1𝑗 = 𝑈1𝑗 ,   𝑗 = 1,2,3… , 𝑛  

Now let's multiply all the rows of matrix L starting from the second by the first column of U. 

𝑎𝑖1 = 𝑙𝑖1𝑈11     ;   𝑖 = 2,3, … , 𝑛  
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𝑙𝑖1 =
𝑎𝑖1

𝑈11
  ;   𝑖 = 2,3, … . , 𝑛 

If we continue in a similar way, the second row of U and then the second column of L are 

determined. Now let's try to generalize what we did. Let (𝑘 − 1) rows of U and (𝑘 − 1) 

columns of L be determined. 

𝑎𝑘𝑗 = ∑ 𝑙𝑘𝑚𝑈𝑚𝑗

𝑘

𝑚=1

       𝑗 = 𝑘, 𝑘 + 1,… . , 𝑛 

𝑎𝑘𝑗 = ∑ 𝑙𝑘𝑚𝑈𝑚𝑗 + 𝑈𝑘𝑗

𝑘−1

𝑚=1

     𝑗 = 𝑘, 𝑘 + 1,… , 𝑛 

Note that in the ∑operation, all 𝑙𝑘𝑚 are in the first (𝑘 − 1) column of each L matrix. 

At the same time, ∑all 𝑈𝑚𝑗 in the process are in the first (𝑘 − 1) row of the U matrix. 

Therefore, their values are known. In other words, ∑all values and current in the process are 

known. 

𝑈𝑘𝑗 = 𝑎𝑘𝑗 − ∑ 𝑙𝑘𝑚𝑈𝑚𝑗

𝑘−1

𝑚=1

    𝑗 = 𝑘, 𝑘 + 1,… , 𝑛 

The matrix U has k rows. 

This time, if we multiply all the rows after k of the L matrix with the k columns of the U matrix, 

we get the following equation. 

𝑎𝑖𝑘 = ∑ 𝑙𝑖𝑚𝑈𝑚𝑘  ,    𝑖 = 𝑘 + 1, … , 𝑛

𝑘

𝑚=1

 

𝑎𝑖𝑘 = ∑ 𝑙𝑖𝑚𝑈𝑚𝑘 + 𝑙𝑖𝑘𝑈𝑘𝑘 , 𝑖 = 𝑘 + 1,… . , 𝑛

𝑘−1

𝑚=1

 

∑all  𝑙𝑖𝑚's in the process are in the first (𝑘 − 1) column of the L matrix and therefore their 

values are known. ∑all  𝑈𝑚𝑘 's in the process are in the first (𝑘 − 1) row of the U matrix and 

therefore their values are known. 

𝑙𝑖𝑘 𝑈𝑘𝑘 = 𝑎𝑖𝑘 − ∑ 𝑙𝑖𝑚𝑈𝑚𝑘    ,    𝑖 = 𝑘 + 1,… , 𝑛

𝑘−1

𝑚=1

 

⇒ 𝑙𝑖𝑘 = (𝑎𝑖𝑘 − ∑ 𝑙𝑖𝑚𝑈𝑚𝑘)/𝑈𝑘𝑘   ,    𝑖 = 𝑘 + 1, … , 𝑛

𝑘−1

𝑚=1

 

Example 6.1.  
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𝐴 = [

6 2 1 −1
2 4 1 0
1

−1
1
0

4
−1

−1
3

] = [

1
𝑙21

0
1

0 0
0 0

𝑙31 𝑙32 1 0
𝑙41 𝑙42 𝑙43 1

] [

𝑈11

0

𝑈12

𝑈22

𝑈13 𝑈14

𝑈23 𝑈24

0 0 𝑈33 𝑈34

0 0 0 𝑈44

] 

𝑈11 = 6,𝑈12 = 2,𝑈13 = 1,𝑈14 = −1 

𝑙21𝑈11 = 2, 𝑙31𝑈11 = 1, 𝑙41𝑈11 = −1 

𝑙21 =
2

𝑈11
 , 𝑙31 =

1

𝑈11
 , 𝑙41 =

−1

𝑈11
 

𝑙21 =
2

6
=

1

3
 , 𝑙31 =

1

6
 , 𝑙41 =

−1

6
 

𝐿 =

[
 
 
 
 
 
 

1
1

3

0
1

0 0
0 0

1

6
𝑙32 1 0

−
1

6
𝑙42 𝑙43 1

]
 
 
 
 
 
 

,   𝑈 = [

6
0

2
𝑈22

1 −1
𝑈23 𝑈24

0 0 𝑈33 𝑈34

0 0 0 𝑈44

] 

Let's multiply the 2 rows of L by all the columns of U. 

2

3
+ 𝑈22 = 4 ⇒ 𝑈22 =

10

3
 

1

3
+ 𝑈23 = 1 ⇒ 𝑈23 =

2

3
 

−
1

3
+ 𝑈24 = 0 ⇒ 𝑈24 =

1

3
 

We multiply all the rows of L after 2 by the 2 columns of U. 

2

6
+

10

3
𝑙32 = 1 ⇒ 𝑙32 =

1

5
 

(−
2

6
) +

10

3
𝑙42 = 0 ⇒ 𝑙42 =

1

10
 

If 3 rows of L are multiplied by the columns of U starting from 3; 

1

6
∙ 1 +

1

5
∙
2

3
+ 𝑈33 = 4 ⇒ 𝑈33 =

37

10
 

1

6
∙ (−1) +

1

5
∙
1

3
+ 𝑈34 = −1 ⇒ 𝑈33 = −

9

10
 

To determine the last row of L, we multiply the last row of L by the 3rd and 4th columns of U. 
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𝑙42 = −
9

2
 ,   𝑈44 =

191

74
 

Theorem 6.2. Let A be a matrix of 1 and all its first principal submatrices are non-singular, L 

is a lower triangular matrix, V is an upper triangular matrix, and D is a diagonal matrix. Since 

𝐴 =  𝐿𝐷𝑉, it can be factored and there is only one way to do this. 

Proof: There is only one way to do this: L is lower triangular, U is upper triangular matrices, 

and A=LU is their multiplicative separation. 

The diagonal elements of matrix D are the same as the diagonal elements of matrix U. 

𝐷 =

[
 
 
 
𝑈11 0

𝑈22

0 ⋱
𝑈𝑛𝑛]

 
 
 
⇒ 𝐷−1 =

[
 
 
 
 
 
1

𝑈11
⁄ 0

1
𝑈22

⁄

0 ⋱ 1
𝑈𝑛𝑛

⁄ ]
 
 
 
 
 

 

⇒ 𝑉 = 𝐷−1𝑈, Therefore, V becomes an upper triangular matrix. 

This means 𝐴 = 𝐿𝐷𝑉. 

What needs to be done to define the proof is to show uniqueness. Let 𝐴 = 𝐿1𝐷1𝑉1 and 𝐴 =

 𝐿2𝐷2𝑉2, let 𝑈 = 𝐷1𝑉1, 𝑈 = 𝐷2𝑉2. Both 𝑈1 and 𝑈2 are upper triangular matrices. 𝐿1 and 𝐿2 

matrices are lower triangular matrices. From the previous theorem, the necessity and necessity 

of 𝐿1 = 𝐿2 and 𝑈1 = 𝑈2 emerge. 

This means 𝐷1𝑉1 = 𝐷2𝑉2. 

𝐷2
−1𝐷1 = 𝑉2𝑉1

−1 ⇒ 𝐷2
−1𝐷1 = 𝐼 = 𝑉2𝑉1

−1 

𝐷1 = 𝐷2 and 𝑉1 = 𝑉2 

7.0 CROUT METHOD  

𝐴 = [

𝑎11 𝑎12 ⋯ 𝑎1𝑛

𝑎21 𝑎22 ⋯ 𝑎2𝑛

⋮ ⋮ ⋯ ⋮
𝑎𝑛1 𝑎𝑛2

⋯ 𝑎𝑛𝑛

] =

[
 
 
 
 
𝑙11

𝑙21

𝑙31

⋮
𝑙𝑛1

0
𝑙22

𝑙32

⋮
𝑙𝑛2

⋯
0
𝑙33

⋱
…

⋯
⋯
⋱
⋮
…

0
0
⋮
0

𝑙𝑛𝑛]
 
 
 
 

[
 
 
 
 
1 𝑈12 ⋯ ⋯ 𝑈1𝑛

0 1 ⋯ ⋯ 𝑈2𝑛

⋮
⋮
0

⋱
⋮
⋯

⋱ ⋱ ⋮
⋱ ⋱ ⋮
⋯ 0 1 ]

 
 
 
 

 

𝐴 = 𝐿𝑈 

The first column of matrix U is completely known and has only one non-0 component. If we 

multiply all rows of matrix L by the first column of U; 𝑎𝑖1 = 𝑙𝑖1 ; We obtain the equality 𝑖 =

1,2, . . 𝑛. 

Therefore, the first column of L is determined. Now, let's multiply the first row of matrix L and 

the columns after the first of matrix U. 

http://www.ijebssr.com/


International Journal of Economics, Business and Social Science Research 

Volume: 02, Issue: 04 July - August 2024 

 

 

www.ijebssr.com                                Copyright © IJEBSSR 2024, All right reserved Page 85 
 

𝑎1𝑗 = 𝑙11𝑈1𝑗,   𝑗 = 2,3, … . , 𝑛  

𝑈1𝑗 =
𝑎1𝑗

𝑙11
⁄  ,   𝑗 = 2,3, … . , 𝑛 the first line of U becomes clear. 

If we continue in a similar way, 2 columns of L are determined, and then 2 rows of U are 

determined. If we generalize: 

Let the first (𝑘 − 1) column of L and the first (𝑘 − 1) row of U be determined. Let's multiply 

all the rows of the L matrix starting from k with the k columns of the U matrix. 

𝑎𝑖𝑘 = ∑ 𝑙𝑖𝑚𝑈𝑚𝑘  ,   𝑖 = 𝑘,… , 𝑛

𝑘

𝑚=1

 

𝑎𝑖𝑘 = ∑ 𝑙𝑖𝑚𝑈𝑚𝑘 + 𝑙𝑖𝑘𝑈𝑘𝑘 = ∑ 𝑙𝑖𝑚𝑈𝑚𝑘 + 𝑙𝑖𝑘

𝑘−1

𝑚=1

𝑘−1

𝑚=1

 

The 𝑙𝑖𝑚′𝑠 in the ∑operation are from the first (𝑘 − 1) column of the L matrix. Therefore, their 

values are known. Umk is from the first (𝑘 − 1) row of the U matrix and therefore its values 

appear. Therefore, the k columns of the L matrix are determined. This time, if the k rows of the 

L matrix are multiplied by the k columns of the U matrix. 

𝑎𝑘𝑗 = ∑ 𝑙𝑘𝑚𝑈𝑚𝑗    ,   𝑗 = 𝑘 + 1,… . , 𝑛

𝑘

𝑚=1

 

𝑎𝑘𝑗 = ∑ 𝑙𝑘𝑚𝑈𝑚𝑗 + 𝑙𝑘𝑘𝑈𝑘𝑗 ,   𝑗 = 𝑘 + 1,… , 𝑛

𝑘−1

𝑚=1

 

The 𝑙mk's in the ∑operation are from the first (𝑘 − 1) column of the L matrix and therefore 

their values are known. Umj's are from the first (𝑘 − 1) row of the U matrix and therefore their 

values are known. At the same time, the 𝑙𝑘𝑘 ≠ 0 value was determined in the previous step. 

𝑈𝑘𝑗 = (𝑎𝑘𝑗 − ∑ 𝑙𝑘𝑚𝑈𝑚𝑗)/𝑙𝑘𝑘 

𝑘−1

𝑚=1

 ;   𝑗 = 𝑘 + 1,… . , 𝑛 

and the k rows of the U matrix have been determined. 

Example 7.1.  

[

6 2 1 −1
2 4 1 0
1

−1
1
0

4
−1

4
3

] = [

𝑙11 0 0 0
𝑙21 𝑙22 0 0
𝑙31

𝑙41

𝑙32

𝑙42

𝑙33

𝑙43

0
𝑙44

] [

1 𝑈12 𝑈13 𝑈14

0 1 𝑈23 𝑈24

0
0

0
0

1 𝑈34

0 1

] 

First, let's multiply the rows of L by the first column of U. 

𝑙11 = 6 , 𝑙21 = 2 , 𝑙31 = 1 , 𝑙41 =-1 
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Let's multiply the first row of L by the other columns of U. 

𝑙11𝑈12 = 2 , 𝑙11𝑈13 = 1 , 𝑙11𝑈14 = −1 

𝑈12 =
2

𝑙11
 , 𝑈13 =

1

𝑙11
 , 𝑈14 = −

1

𝑙11
 

𝑈12 =
2

6
=

1

3
 , 𝑈13 =

1

6
 , 𝑈14 = −

1

6
 

Let's multiply all the rows of L starting from 2 by the 2 columns of U. 

𝑙22 = 𝑎22 − 𝑙21𝑈12 ⇒ 𝑙22 =
10

3
 

𝑙32 = 𝑎32 − 𝑙31𝑈12 ⇒ 𝑙32 =
2

3
 

𝑙42 = 𝑎42 − 𝑙41𝑈12 ⇒ 𝑙42 =
1

3
 

Now let's multiply the 2 rows of L by the 2 columns of U. 

𝑙21𝑈13 + 𝑙22𝑈23 = 𝑎23 ⇒ 𝑈23 =
1

5
 

𝑙21𝑈14 + 𝑙22𝑈24 = 𝑎24 ⇒ 𝑈24 =
1

10
 

Continuing, if we multiply all the rows of L starting from 3 by the 3 columns of U. 

𝑙33 = 𝑎33 − (𝑙31𝑈13 + 𝑙32𝑈23) ⇒ 𝑙33 =
37

10
 

𝑙43 = 𝑎43 − (𝑙41𝑈13 + 𝑙42𝑈23) ⇒ 𝑙43 = −
9

10
 

Now, if we multiply the 3 rows of L with the columns after 3 of U, that is, 4 columns, we get. 

𝑈32 =
[𝑎34−(𝑙31𝑈14+𝑙32𝑈24)]

𝑙33
⇒ 𝑈32 = −

9

37
, 

4 rows of L have 𝑙44 elements. 

𝑙44 = 𝑎44 − (𝑙41𝑈14 + 𝑙42𝑈24 + 𝑙43𝑈34) ⇒ 𝑙44 =
191

74
 

[

6 2 1 −1
2 4 1 0
1

−1
1
0

4
−1

4
3

] =

[
 
 
 
 

6 0 0          0

2 10
3⁄ 0          0

1
−1

2
3⁄

1
3⁄

37
10⁄

−9
10⁄

0
191

74⁄
]
 
 
 
 

[
 
 
 
 1

1
3⁄

1
6⁄

−1
6⁄

0 1 1
5⁄

1
10⁄

0
0

0
0

1 −9
37⁄

0           1 ]
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Theorem 7.2.: Let A be a nxn symmetric matrix. If it can be factored as 𝐴 = 𝐿𝐷𝐿𝑇 , where L 

is a lower triangular matrix and D is a diagonal matrix, the necessary and sufficient conditions 

for A to be positive definite are that all diagonal components of D are positive. 

Algorithm of subtraction of 𝐿𝐷𝐿𝑇 

i) Dimension n is obtained. 

ii) All components of matrix A are obtained. 

iii) Repeat the following from 𝑖 = 1 to n  

1)𝑑𝑖 = 𝑎𝑖𝑖 − ∑ 𝑙𝑖𝑘
2 𝑑𝑘

𝑖−1
𝑘=1  

2) Repeat the following from  𝑗 = (𝑖 + 1) to n 

 𝑙𝑗𝑖 = (𝑎𝑗𝑖 − ∑ 𝑙𝑗𝑘𝑙𝑖𝑘𝑑𝑘)/𝑑𝑖
𝑖−1
𝑘=1  

Example 7.3.  

𝐴 = [
4 −1 1

−1 4,25 2,75
1 2,75 3,50

] 

𝑖 = 1 

𝑑1 = 𝑎11 = 4 ,   

𝑙21 =
𝑎21

𝑑1
⁄ ⇒ 𝑙21 = −1

4⁄ = −0,25 ,    

𝑙31 =
𝑎31

𝑑1
⁄ ⇒ 𝑙21 = 1

4⁄ = 0,25 

𝑖 = 2 

𝑑2 = 𝑎22 − 𝑙21
2 𝑑1 ⇒ 𝑑2 = 4,25 − (−0,25)2 ∙ 4 ⇒  𝑑2 = 4  

𝑙21 =
𝑎21

𝑑1
⁄ ⇒ 𝑙21 = −1

4⁄ = −0,25    

𝑙32 =
[𝑎32 − 𝑙31𝑙21𝑑1]

𝑑2
⇒ 𝑙32 =

[2,75 − (0,25)(−0,25) ∙ 4]

4
⇒ 𝑙32 =

3

4
= 0,75 

𝑖 = 3 

𝑑3 = 𝑎33 − [𝑙31
2 𝑑1 + 𝑙32

2 𝑑2] ⇒ 𝑑3 = 3,5 − [(0,25)2 ∙ 4 − (0,75)2 ∙ 4] ⇒ 𝑑3 = 1 

𝐷 = [
4 0 0
0 4 0
0 0 1

] , 𝐿 = [
1 0 0

−0,25 1 0
0,25 0,75 1

] 

Example 7.4.  
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𝐴 = [
4 −1 0

−1 2 −1
0 −1 2

] 

𝑖 = 1 

𝑑1 = 𝑎11 = 4 ,   

𝑙21 =
𝑎21

𝑑1
⁄ ⇒ 𝑙21 = −1

4⁄ = −0,25 ,    

𝑙31 =
𝑎31

𝑑1
⁄ ⇒ 𝑙21 = 0 

𝑖 = 2 

𝑑2 = 𝑎22 − 𝑙21
2 𝑑1 ⇒ 𝑑2 = 2 − (−0,25)2 ∙ 4 ⇒  𝑑2 = 1,75  

𝑙32 =
[𝑎32 − 𝑙31𝑙21𝑑1]

𝑑2
⇒ 𝑙32 =

[−1 − 0]

1,75
⇒ 𝑙32 = −

4

7
= −0,5714286 

𝑖 = 3 

𝑑3 = 𝑎33 − [𝑙31
2 𝑑1 + 𝑙32

2 𝑑2] ⇒ 𝑑3 = 2 − [0 +
16

49
∙
7

4
] ⇒ 𝑑3 = 2 −

4

7
⇒ 𝑑3 = 1,43 

8.0 CHOLES METHOD  

𝐴 = [

𝑎11 𝑎12 ⋯ 𝑎1𝑛

𝑎21 𝑎22 ⋯ 𝑎2𝑛

⋮ ⋮ ⋯ ⋮
𝑎𝑛1 𝑎𝑛2

⋯ 𝑎𝑛𝑛

] = [

𝑔11 0     ⋯ 0
𝑔21 𝑔22 ⋯ 0
⋮ ⋮ ⋮

𝑔𝑛1 𝑔𝑛2
⋯ 𝑔𝑛𝑛

] [

𝑔11 𝑔12
⋯ 𝑔1𝑛

0 𝑎22     ⋯ 𝑎2𝑛

⋮ ⋮ ⋯ ⋮
0 0       ⋯ 𝑔𝑛𝑛

] 

𝐴 = 𝐺𝐺𝑇 

A is symmetric and can be factored as 𝐺 = 𝐺𝑇 

1) Let's multiply all the rows of G by the first column of 𝐺𝑇. 

𝑎𝑖1 = 𝑔𝑖1𝑔11 , 𝑖 = 1,2, … , 𝑛 

𝑖 = 1    𝑎11 = 𝑔11
2 ⇒ 𝑎11 = √𝑔11 

𝑖 > 1   𝑔𝑖1 =
𝑎𝑖1

𝑔11
 

2) Let's multiply all the rows of G starting from 2 by the second column of 𝐺𝑇. 

 

𝑎𝑖2 = 𝑔𝑖1𝑔21 + 𝑔𝑖2𝑔22 

 

𝑖 = 2    𝑎22 = 𝑔21
2 + 𝑔22

2 ⇒ 𝑔22 = √𝑎22 − 𝑔21
2  
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𝑖 > 2   𝑔𝑖2 =
𝑎𝑖2 − 𝑔𝑖1𝑔21

𝑔22
 

3) Let the first 𝑗 − 1 column of G be determined. Let's multiply all the rows of G starting 

from j with the j column of 𝐺𝑇 . 

 

𝑎𝑖𝑗 = ∑ 𝑔𝑖𝑘𝑔𝑗𝑘

𝑗

𝑘=1

  𝑖 = 𝑗, 𝑗 + 1,… , 𝑛 

𝑖 = 𝑗 𝑎𝑗𝑗 = ∑ 𝑔𝑗𝑘
2𝑗

𝑘=1 ⇒ 𝑎𝑗𝑗 = ∑ 𝑔𝑗𝑘
2 + 𝑔𝑗𝑗

2𝑗−1
𝑘=1 ⇒ 𝑔𝑗𝑗 = √𝑎𝑗𝑗 − ∑ 𝑔𝑗𝑘

2𝑗−1
𝑘=1  

𝑖 > 𝑗   𝑔𝑖𝑗 =
𝑎𝑖𝑗 − ∑ 𝑔𝑖𝑘𝑔𝑗𝑘

𝑗−1
𝑘=1

𝑔𝑗𝑗
 

Example 8.1.  

𝐴 = [
4 −1 1

−1 4,25 2,75
1 2,75 3,50

] = 𝐺𝐺𝑇 

𝑖 = 1 ⇒   𝑎11 = 𝑔11
2 ⇒ 𝑎11 = √𝑔11    ⇒ 𝑎11 = √4 ⇒ 𝑎11 = 2 

𝑖 > 1   𝑔𝑖1 =
𝑎𝑖1

𝑔11
 

𝑔21 =
𝑎21

𝑔11
⇒ 𝑔21 = −

1

2
= −0,5 , 𝑔31 =

𝑎31

𝑔11
⇒ 𝑔31 =

1

2
= 0,5   

 

𝑖 = 2    𝑎22 = 𝑔21
2 + 𝑔22

2 ⇒ 𝑔22 = √𝑎22−𝑔21
2 ⇒ 𝑔22 = √4,25 − (−0,5)2 ⇒ 𝑔22 =

√4 = 2 

 

𝑖 > 2   𝑔𝑖2 =
𝑎𝑖2 − 𝑔𝑖1𝑔21

𝑔22
 

𝑔32 =
𝑎32 − 𝑔31𝑔21

𝑔22
⇒ 𝑔32 =

2,75 − 0,5 ∙ (−0,5)

2
⇒ 𝑔32 =

3

2
= 1,50 

𝑖 = 3 ⇒ 𝑔33 = √𝑎33 − (𝑔31
2 + 𝑔32

2 ) ⇒ 𝑔33 = √3,50 − (0,502 + 1,502) ⇒ 𝑔33 = √1

= 1 

9.0 DISCUSSION AND CONCLUSIONS 
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The purpose of this paper is to show the details of matrix algebra, matrix factorization, 

definitions of upper and lower triangular matrices with several methods such as Doolittle 

method, Crout method, Choles method and examples of their application. 

From the above, we tried to bring the examples closer to the smallest detail. To show examples 

that can be applied by doing these methods. It is hoped that this part of the chapter will continue 

and be useful to all those who want to know more about matrices and the method of solving 

them... 
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