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ABSTRACT 

This paper explores a novel approach to elliptic curve cryptography by leveraging Lie algebras, 

a branch of mathematics that provides powerful tools for studying symmetries in geometric 

objects we begin by introducing the fundamental concepts of elliptic curves and Lie algebras, 

highlighting their relevance in contemporary cryptographic systems. Subsequently, we delve 

into the intricate connections between elliptic curves and Lie algebras, elucidating how Lie 

algebras offer a unique framework for understanding the underlying structures of elliptic 

curves. Our paper presents a comprehensive analysis of how Lie algebras can be effectively 

utilized to enhance various aspects of elliptic curve cryptography, including key generation, 

encryption, and decryption processes. We explore the advantages of employing Lie algebras, 

such as increased computational efficiency and resistance against emerging cryptographic 

attacks. Furthermore, we discuss practical implementations and provide insights into the 

feasibility of integrating Lie algebras techniques into existing elliptic curve cryptographic 

systems. We also discuss potential avenues for future research and development in this 

promising area of cryptographic study. Through theoretical analysis and practical 

considerations, this paper underscores the potential of Lie algebras as a valuable tool for 

advancing elliptic curve cryptography, offering new perspectives and avenues for enhancing 

the security and efficiency o cryptographic systems in the digital age. 
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1.0 INTRODUCTION 

Algebra is a mathematical discipline that arose from the problem of solving equations [1]. If 

one starts with the integers Z, it is known that every equation 𝑎 +  𝑥 =  𝑏,, where a and b are 

integers, has a unique solution. However, the equation 𝑎𝑥 =  𝑏 does not necessarily have a 

solution in Z, or it may have infinitely many solutions (take 𝑎 =  𝑏 =  0). So let's increase Z 

to rational numbers Q, consisting of 𝑐 /𝑑 of all fractions, where d ≠ 0 . Then both equations 

have a unique solution in Q, provided that a ≠ 0 for the equation 𝑎 ≠  0. So Q is a field. In the 

study of fields obtained by joining the roots of polynomial equations, a new concept appeared, 

namely, symmetries of fields that permute the roots of the equation. The theory of groups arose 

from the study of polynomial equations. [2]. The solvability of the equation is determined by 

the group of permutations of its roots; before Abel [1824] and Galois [1830] mastered this 

relation, it led Lagrange [1770] and Cauchy [1812] to investigate permutations and prove the 

precursors of the theorems that bear their names. The term "group" was coined by Galois. 

Interest in transformation groups, and in what we now call classical groups, grew after 1850; 

thus Klein's Erlanger program [1872] emphasized their role in geometry. Modern group theory 

began when the axiomatic method was applied to these results; Burnside's theory of groups of 
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finite order [1897] marks the beginning of a new discipline, abstract algebra, in which 

structures are defined by axioms and the nature of their elements is irrelevant. 

Definition 1.1. A group is a set G, together with a map 𝐺 × 𝐺 into G with the following 

properties: 

 Closure: For all 𝑎, 𝑏 ∈ 𝐺 we have  

𝑎 ⋅ 𝑏 ∈ 𝐺 

 Associativity: For all 𝑎, 𝑏, 𝑐 ∈  𝐺. 

(𝑎𝑏)𝑐 = 𝑎(𝑏𝑐) 

There exists an element e in G such that for all 𝑎 ∈ 𝐺, 

𝑎 ⋅ 𝑒 = 𝑎 ⋅ 𝑥 = 𝑥 

The element e is unique and is called the group identity element or simply identity. 

 and such that for all 𝑎 ∈ 𝐺, there exists 𝑎′ ∈ 𝐺 with  

 
𝑎 ⋅ 𝑎′ = 𝑎′ ⋅ 𝑎 = 𝑒 

is called the inverse of a. 

Definition 1.2. A group G is said to be commutative or abelian if for all 𝑎, 𝑏 ∈  𝐺 we have 𝑎 ⋅

𝑏 =  𝑏 ⋅ 𝑎. A group that is not abelian is said to be non-abelian. 

Almost all groups where cryptography is encountered are abelian, since the commutative 

property is what makes them cryptographically interesting. 

Proposal 1.3. (Uniqueness of identity). Let G be a group, and let 𝑒, 𝑓 ∈  𝐺 such that for all 𝑎 ∈
 𝐺. 

𝑒 ⋅ 𝑎 = 𝑎 ⋅ 𝑒 = 𝑎 

𝑓 ⋅ 𝑎 = 𝑎 ⋅ 𝑓 = 𝑎 

Then 𝑒 =  𝑓. 

Proof. Since e is an identity, we have 

𝑒 ⋅ 𝑓 = 𝑓 

On the other hand, since 𝑓 is an identity, we have 

𝑒 ⋅ 𝑓 = 𝑒 

So 𝑒 = 𝑒 ⋅ 𝑓 = 𝑓.. 
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Definition 1.4. A subgroup of G is a subgroup H of G with the following properties: 

1)  Identity is an element of H. 

2)  If ℎ ∈  𝐻, then ℎ−1 ∈ 𝐻.  

3)  If ℎ1, ℎ2 ∈  𝐻, then  ℎ1 ⋅ ℎ2 ∈  𝐻. 

Definition 1.5. Let G and H be groups. A homomorphism from G to H is a map 𝜑:𝐺 → 𝐻 such that, 

for all 𝑎, 𝑏 in G, 𝜑(𝑎 ⋅ 𝑏) = 𝜑(𝑎)𝜑(𝑏). 

Definition 1.6. A ring is a set with two operations, usually denoted by + and • for addition and 

multiplication, that satisfy the following properties: 

1. Addition is closed : 

∀𝑎, 𝑏 ∈ 𝐺: 𝑎 + 𝑏 ∈ 𝐺 

2. Addition is associative : 

∀𝑎, 𝑏, 𝑐 ∈ 𝐺: 𝑎 + (𝑏 + 𝑐) = (𝑎 + 𝑏) + 𝑐 

3. 0 is an additive identity : 

∀𝑎 ∈ 𝐺: 𝑎 + 0 = 0 + 𝑎 = 𝑎 

4. The additive inverse always exists : 

∀𝑎 ∈ 𝐺: 𝑎 + (𝑁 − 𝑎) = (𝑁 − 𝑎) + 𝑎 = 0 

5. Addition is commutative :  

∀𝑎, 𝑏 ∈ 𝐺: 𝑎 + 𝑏 = 𝑏 + 𝑎 

6. Multiplication is closed : 
∀𝑎, 𝑏 ∈ 𝐺: 𝑎 ⋅ 𝑏 ∈ 𝐺 

 

7. Multiplication is associative : 
 

∀𝑎, 𝑏, 𝑐 ∈ 𝐺: (𝑎 ⋅ 𝑏) ⋅ 𝑐 = 𝑎 ⋅ (𝑏 ⋅ 𝑐) 

8. 1 is a multiplicative identity  

 
∀𝑎 ∈ 𝐺: 𝑎 ⋅ 1 = 1 ⋅ 𝑎 = 𝑎 

 

9. Multiplication and addition satisfy the distributive law : 

 
∀𝑎, 𝑏, 𝑐 ∈ 𝐺: (𝑎 + 𝑏) ⋅ 𝑐 = 𝑎 ⋅ 𝑐 + 𝑏 ⋅ 𝑐 

 

10. Multiplication is commutative: 

 
∀𝑎, 𝑏 ∈ 𝐺: 𝑎 ⋅ 𝑏 = 𝑏 ⋅ 𝑎 
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The ring and its two operations can be denoted by a triple (𝑅,·, +).  

If the multiplication also happens to be commutative, we say that the ring is commutative. 

Definition 1.7. Let 𝑚 be an integer different from zero, for 𝑎, 𝑏 ∈ 𝐺; 

𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑚) ⇒ 𝑚|𝑎 − 𝑏 

is called the mod m of a with b. 

2.0 PRELIMINARIES 

Definition 2.1. The scientific field that deals with ways to protect data is called cryptography. 

It is the science of secrecy or hidden writing. Cryptography is based on mathematical models 

of algorithms. An algorithm represents a set of procedures that is performed on the initial 

information that is in an open form. After the mentioned set of operations which are defined 

by the algorithm called the encryption process, the result is an unintelligible beginning. The 

exchange of data in the modern world multiplies every day, confidential data can be intercepted 

by attackers and thus reach the person and organization they are not intended for. 

The basic elements of a cryptographic system are a cryptographic algorithm and a 

cryptographic key, and the basic operations are encryption and decryption. The length of the 

cryptographic key is defined by the algorithm. 

The implementation of the cryptographic technique used are ciphers and digital signatures. The 

basic element of protection uses a complex encryption system. Confidentiality of data is 

realized by using symmetric encryption systems, while the application of digital signature 

technology is based on asymmetric encryption systems. 

There are two basic types of encryption systems, symmetric and asymmetric encryption 

systems. 

2.1 Symmetric cipher systems  

Symmetric cipher systems is a system where the same key is used for encryption and 

decryption. That key represents a secret value known to the sender and receiver of the data. In 

addition, that key represents a shared secret where special attention should be paid. In order to 

pay special attention, special algorithms for symmetric key exchange were developed. 

Symmetric cipher systems are divided into two basic groups: 

i. Sequential cipher systems 

ii. Block cipher systems 

Sequential cipher systems use addition according to model 2, i.e. addition in the binary number 

system. Addition according to model 2 is denoted by the mathematical symbol ⊕ or in various 

programming languages by the XOR command. The binary system consists of two elements, 

http://www.ijebssr.com/


International Journal of Economics, Business and Social Science Research 

Volume: 02, Issue: 04 July - August 2024 

 

 

www.ijebssr.com                                Copyright © IJEBSSR 2024, All right reserved Page 43 
 

namely 0 (zero) and 1 (one). Sequential encryption systems are based on the fact that the binary 

string to be encrypted is added according to model 2 with a cryptographic key, which is also a 

binary string, and in this way a string representing the cipher is obtained. the cryptographic key 

in the form of a binary string is generated using an algorithm. Such an algorithm that generates 

numbers is called a deterministic algorithm. 

The period of the cipher string indicates the number of binary elements after which the elements 

are repeated and must be of the same length as the length of the string they encode. 

Block cipher systems are used by dividing the original message into blocks that are encrypted 

using cryptographic keys in blocks of two or more elements. Each element is encrypted 

differently, depending on the encryption method of neighboring elements located in the same 

block. 

The basic elements of the block cipher system are: 

i. Initial or initial transformation: may contain one or two functions. The first function 

masks input data ie. swaps blocks that contain only zeros and ones. The second function 

aims to make certain attacks on block cipher systems as difficult as possible. 

ii. A cryptographically weak function that repeats n times: it forms a non-linear function 

whose parameters are parts of the cryptographic key and parts of the input data. 

Nonlinear functions can contain only one operation that is very complex or a series of 

consecutive, mutually different, simple transformations. Each repetition is connected 

to each other by adding according to model 2, each individual bit with the data coming 

from the previous repetition. 

iii. Final or final transformation: which ensures that encryption and decryption operations 

are symmetric. 

iv. Key Development Algorithm: which has the role of converting a key, which is usually 

of limited length, into multiple sub-keys consisting of multiple bits. 

A block cipher is used to encrypt short messages such as passwords, digital signatures, 

identification data, and the like. 

One of the fundamental problems in secret key cryptography is the exchange of cryptographic 

keys. Two users communicating with each other and exchanging encrypted data must choose 

a secret key before starting communication. They must use a secure channel to exchange the 

secret key. One of them that is publicly available is called the public key, while the other key 

is called the secret key and is accessible only to its owner. With this encrypted system, there 

are two families of function pairs. The first function is used for encryption and is marked with 

E, which is the symbol of the English word for encryption - encryption. The second function 

serves for decryption and is marked with D, which is the symbol of the English word for 

decryption - decryption. The first key or k_1 is used for encryption while the second key k_2. 

s used for decryption. The functions for encryption and decryption are also denoted as E_(k_1 

)- encryption with key k_1 i D_(k_2 ) decryption with key k_2. With M we denote a set of 

open messages, which is a symbol of the English word - message. X denotes a set of ciphers, 

since in mathematics an unknown quantity is most often denoted by x. 

We write as follows: 
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𝐸𝑘1:𝑀 → 𝑋                                            (1) 

𝐷𝑘2 ∶ 𝑋 → 𝑀                                          (2) 

For each open message m that is in the set M, the following applies:  

𝐷𝑘2 (𝐸𝑘1(𝑚)) = 𝑚                                (3) 

Before the use of the description system begins, communication participants A and B must 

agree on which pair of keys 𝑘1, 𝑘2they will use. Pairs of mutual prime numbers that can be used 

as cryptographic keys must also be determined. Suppose that communication participant A 

sends a message m from set M to communication participant B. Communication participant A 

encrypts and sends message m using the function 𝐸𝑘1 as follows: 

𝐸𝑘1(𝑚) = 𝑐                                              (4) 

After the calculation, the participant A sends the calculated value c using B. The 

communication participant B, to whom the message is intended, wants to reconstruct the 

message sent by A, B must decrypt the cipher c received from A. For this purpose, he will use 

the decryption function 𝐷𝑘2 

To use a cryptographic system with public keys in practice, it is necessary to define a function 

called a one-way function (One-Way Function OWF). 

𝑓:𝑀 → 𝑋                                                  (5) 

The defined one-way function is calculable as follows 

𝑓(𝑚) = 𝑐                                                  (6) 

Necessarily, a function that is the inverse of a one-way function is difficult to calculate. The 

inverse function is represented as follows: 

𝑓−1(𝑐) = 𝑚                                               (7) 

If communication participant A wants to send a message m to another communication 

participant B, it is necessary that the public key found in the catalog of public keys of 

participant B, which is 𝐸𝑏. Poslije toga, After that, A sends the message  𝑓𝑏(𝑚) = 𝑐 to user B. 

Only participant B can calculate the inverse function 𝑓𝑏
−1 and thus only participant B can 

reconstruct the original message m. 

𝑓𝑏
−1(𝑐) = 𝑓𝑏

−1(𝑓𝑏(𝑚)) = 𝑚                                   (8) 

The security of public key cryptosystems in use today is measured by the number of operations 

that must be performed to compute the inverse function, even though there is no algorithm that 

easily computes the inverse function. [4] 

3.0 ELLIPTIC CURVES 
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Elliptic curves are a family of smooth algebraic curves, so they can be described by an algebraic 

expression and their first derivative is defined at every point of the domain where the curve is 

defined. It is used in various areas of mathematics from number theory to complex analysis. 

They have a special application in cryptography. 

Definition 3.1. Elliptic curves represent a set of points in a plane whose position is defined by 

the following algebraic expression: 

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏                                             (9) 

The above expression (9) is also called Weierschrass normal form of elliptic curves. 

Whereby the expression 

𝐷 = 4𝑎3 + 27𝑏2                                                   (10) 

It is called the discriminant of the polynomial and 𝐷 ≠ 0.. 

One of the most important properties of elliptic curves is that an operation can be introduced 

on them, in a natural way, with which they become Abelian groups.Depending on the 

parameters a and b, the graph of the elliptic curve can have different shapes. In the following 

figure 1, several characteristic forms o elliptic curve graphics are shown using the Geogebre 

program graphic calculator. 

 

 

a) 𝑦2 = 𝑥3 − 3𝑥 + 3                 𝑦2 = 𝑥3 + 3𝑥 − 3 
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a) 𝑦2 = 𝑥3 − 5𝑥                 𝑦2 = 𝑥3 + 𝑥 

Figure 1: Some characteristic shapes of elliptic curve graphs (a,b -1 component and c-2 

component) 

Let 𝑃, 𝑄 ∈ 𝐸, such that the points P and Q belong to the graph of the elliptic curve. Let's set the 

line p so that it contains the points P and Q. The line p is a segment of the graph of the elliptic 

curve. If the points P and Q are with coordinates 𝑃(𝑥1, 𝑦1) and 𝑄(𝑥2, 𝑦2) then the coefficient 

of the line p is calculated as follows: 

𝑡𝑔𝛼 =
𝑦2 − 𝑦1
𝑥2 − 𝑥1

 

In the general case, the line p intersects the graph of the elliptic curve at one point, i.e. in the 

third point belonging to the graphic of the elliptic curve. We will mark the third point with 𝑅. 

We will take the line q containing the point 𝑅, which is parallel to the y axis of the rectangular 

coordinate system and is normal to the x axis of the rectangular coordinate system. Let's mark 

the intersection of the line q and the graph of the elliptic curve with −𝑅. In this way, the addition 

of points P and Q, which are located on the graphic of the elliptic curve, is defined. The sum 

of two elements P and Q from the set E is denoted by 𝑃 ⨁ 𝑄 or 𝑃 + 𝑄. Graphically, all of the 

above is shown in the following figure 2. 

 

Figure 2: Graphical interpretation of the addition of two elements in set E 
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Let 𝑃 ∈ 𝐸. To determine the opposite element, it is necessary to add 𝑃 ⊕−𝑃, i.e. introduce a 

third point of intersection with the graph of the elliptic curve O which is neutral and which is 

considered a point of and line parallel to the y-axis. The graphic interpretation is shown in 

Figure 3. 

 

Figure 3: Graphical interpretation of the determination of the opposite element in the set 

E. 

After the graphical interpretation, it is necessary to interpret the operations on the set E 

algebraically. 

Let 𝑃 = (𝑥1, 𝑦1) and  𝑄 = (𝑥2, 𝑦2). The following properties can then be defined: 

1. 𝑃 + 𝑂 = 𝑂 + 𝑃 = 𝑃 

2. 𝑃 + (−𝑃) = 𝑂 

3. 𝑃 + (𝑄 + 𝑅) = (𝑃 + 𝑄) + 𝑅 

4. 𝑃 + 𝑄 = 𝑄 + 𝑃 

5. −𝑂 = 𝑂 

6. −𝑃 = (𝑥1, −𝑦1) 
7. If 𝑄 = −𝑃, then 𝑃 + 𝑄 = 𝑂 

8. If 𝑄 ≠ −𝑃, then 𝑃 + 𝑄 = (𝑥3, 𝑦3) where  

𝑥3 = 𝜆
2 − 𝑥1 − 𝑥2, 𝑦3 = −𝑦1 + 𝜆(𝑥1 − 𝑥3) 

𝜆 =

{
 

 
𝑦2 − 𝑦1
𝑥2 − 𝑥1

, if 𝑥2 ≠ 𝑥1

3𝑥1
2 + 𝑎

2𝑦1
, if 𝑥2 = 𝑥1

 

The number λ is the coefficient of the direction of the line through P and Q, i.e. the tangent at 

the point P in the case of 𝑃 =  𝑄. 

3.1 Public key cryptography and elliptic curves 

The basic task of cryptography is to enable communication between two people (the sender 

and the receiver) in such a way that the third person cannot understand the messages. The 

message that the sender wants to send to the receiver is called plaintext. The sender forms a 
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public key using a pre-agreed key K, such a process is called encryption, and the resulting 

format is a cipher. After that, the sender sends the cipher through some communication channel. 

Diffie-Hellman (1976) offered one possible solution to the key exchange problem, based on 

the fact that in some groups exponentiation is much simpler than logarithmization. They are 

considered the originators of public key cryptography. The idea of public key is to construct 

cryptosystems where, from knowing the encryption function 𝐸𝑘, it would be practically 

impossible (in a reasonable amount of time) to calculate the decryption function  𝐷𝑘. Then the 

function 𝐸𝑘 could be public. Thus, in a public-key cryptosystem, each user K has two keys: 

public  𝐸𝑘 and  secret 𝐷𝑘. If the sender wants to send the recipient a message k, she encrypts it 

using the recipient's public key  𝐸𝑘1 i.e. sends the receiver code 𝑦 = 𝐸𝑘1(𝑥) . The receiver 

decrypts the cipher using his secret key 𝐷𝑘1, 𝐷𝑘1(𝑦) = 𝐷𝑘1(𝐸𝑘1(𝑥)) = 𝑥 . Let's note that the 

receiver must have some additional information (so-called trapdoor - hidden entrance) about 

the function  𝐸𝑘1, so that only he can calculate its inverse 𝐷𝑘1, while this is impossible for 

everyone else. Such functions whose inverse is difficult to calculate without knowing some 

additional data are called personal one-way functions.  

Discrete logarithm problem. Let (𝐺,∗) be a finite group, 𝑔 ∈ 𝐺, 𝐻 =  {𝑔𝑖: 𝑖 ≥

0}a subgroup of G generated by 𝑔, and ℎ ∈ 𝐻. We need to find the smallest non-negative 

integer x such that ℎ =  𝑔𝑥, where 

                                      𝑔𝑥 = 𝑔 ∗ 𝑔 ∗. . .∗ 𝑔                            (11) 

       x times 

he number x is called the discrete logarithm and is denoted by  log𝑔 ℎ [5] 

The fact that there are groups where the discrete logarithm problem is hard was exploited by 

Diffie and Hellman (1976) in their solution to the key exchange problem. 

If the sender and receiver want to agree on a secret random element in the group G, which they 

could use as an encryption key in some symmetric cryptosystem. They have to carry out that 

agreement through some insecure communication channel, of course they didn't exchange any 

information beforehand, except for the information of group G and its generator g. Using the 

Deffie-Hellman protocol for key exchange. 

1. The sender generates a random natural number𝑎 ∈ {1,2, . . . , |G| − 1}, and sends the 

element g^a to the recipient. where |𝐺| denotes the number of elements in group G  

2. The recipient generates a random natural number 𝑏 ∈ {1,2, . . . , |G| − 1}, and sends the 

element 𝑔𝑏 to the sender. 

3. Calculation sender (𝑔𝑏)𝑎 = 𝑔𝑎𝑏. 

4. Calculation recipient (𝑔𝑎)𝑏 = 𝑔𝑎𝑏. 

Now their secret key  𝐾 = 𝑔𝑎𝑏. 

We will now describe ElGamal's cryptocomposition (1985), which is based on the difficulty of 

computing the discrete logarithm in the grouP  𝑍𝑝
∗ . 
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El Gamal's cryptocomposition 

Let p be a prime number and  𝛼 ∈ 𝑍𝑝
∗  primitivni korijen modulo p. primitive root modulo p. 

The values of p and α are public. Each user of system K chooses his secret key  𝑎𝐾 ∈ 𝑍𝑝−1
∗  and 

announces the value 𝛽𝐾 = 𝛼𝑎𝑘(𝑚𝑜𝑑 𝑝). 

1. The sender sends the recipient a secret message 𝑥 ∈ 𝑍𝑝
∗  by choosing a random number  

𝑘 ∈  𝑍𝑝−1 and forwards the public message 

𝐸𝐵(𝑥, 𝑘) = (𝑦1, 𝑦2) = (𝛼𝑘𝑚𝑜𝑑 𝑝, 𝑥𝛽𝐵
𝑘𝑚𝑜𝑑 𝑝) 

2. Now the recipient of the bill: 

𝐷𝐵(𝑦1, 𝑦2) = 𝑦2(𝑦1
𝑎𝐵)−1 𝑚𝑜𝑑 𝑝 = 𝑥(𝛼𝑎𝐵)𝑘((𝛼𝑘)𝑎𝐵)−1 𝑚𝑜𝑑 𝑝 = 𝑥 𝑚𝑜𝑑 𝑝 = 𝑥 

Where 𝑎𝐵 is its secret key. 

Example 3.1. Let A (sender) and B (receiver) agree (publicly) to use the group 𝑍31
∗  and fix the 

element 𝛼 =  3 of this group. A chooses his secret key 𝑎𝐾 = 7, while B chooses his secret key 

𝑎𝐵 = 22. Now A sends B the element 𝛽𝐴 = 17(= 37 𝑚𝑜𝑑 31), and B responds with 𝛽𝐵 =
14(= 322 𝑚𝑜𝑑 31). A wants to pass secret information to B' at x = 24, chooses some random 

number k, let's say k = 5 and calculates: 𝑦1 = 35 𝑚𝑜𝑑 31 = 26 i 𝑦2 = 24 · 145 𝑚𝑜𝑑 31 =
27. B now receives the numbers 26 and 27 and calculates: 27 ·  (2622) − 1𝑚𝑜𝑑31 =  27 ·
 5 − 1 𝑚𝑜𝑑 31 = 27 ·  25𝑚𝑜𝑑 31 =  24. And so B must have received the information x = 

24. Let′s notice that B in no chance does not need to know the random number 𝑘 =  5 nor A′s 

secret key  𝑎𝐴 = 7. [6]. 

3.2. Match-based cryptography  

Bilinear pairings 

Definition 3.2.1. A bilinear mapping on (𝐺1, 𝐺𝜇) is a map 

𝜏: 𝐺1 × 𝐺1 → 𝐺𝜇 

which satisfies the following conditions: 

1) (bilinearity) ∀𝑅, 𝑆, 𝑇 ∈ 𝐺1, 𝜏(𝑅 + 𝑆, 𝑇) = 𝜏(𝑅, 𝑇)𝜏(𝑆, 𝑇) 𝑖 𝜏(𝑅, 𝑆 + 𝑇) =
𝜏(𝑅, 𝑆)𝜏(𝑅, 𝑇) 

2) (non-degeneracy) 𝜏(𝑃, 𝑃) ≠ 1 

3) (computability) 𝜏 can be efficiently calculated. 

For all 𝑆, 𝑇 ∈ 𝐺1 we have the following bilinear matching properties: 

1. 𝜏(𝑆,∞) = 1 𝑖 𝜏(∞, 𝑆) = 1 

2. 𝜏(𝑎𝑆, 𝑏𝑇) = 𝜏(𝑆, 𝑇)𝑎𝑏for all 𝑎, 𝑏 ∈ 𝑍 

3. 𝜏(𝑆, 𝑇) = 𝜏(𝑇, 𝑆) 
4. If 𝜏(𝑆, 𝑅) = 1 for all 𝑅 ∈ 𝐺1, where 𝑆 = ∞ 

5. 𝜏(𝑆, −𝑇) = 𝜏(−𝑆, 𝑇) = 𝜏(𝑆, 𝑇)−1 
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Definition 3.2.2. Let τ be a bilinear matching on (𝐺1, 𝐺𝜇). The bilinear Diffie-Hellman problem 

(BDHP) is as follows: Given 𝑃, 𝑎𝑃, 𝑏𝑃, 𝑐𝑃, calculate 𝜏(𝑃, 𝑃)𝑎𝑏𝑐. 

Hardness of the BDHP implies the hardness of the DHP in both 𝐺1 and 𝐺𝜇 . First, if the DHP 

in 𝐺1 can be efficiently solved, then one could solve an instance of the BDHP by computing 

𝑎𝑏𝑃 and then 𝜏(𝑎𝑏𝑃, 𝑐𝑃) = 𝜏(𝑃, 𝑃)𝑎𝑏𝑐. Also, if the DHP in 𝐺𝜇 can be efficiently solved, then 

the BDHP instance could be solved by computing 𝑔 = 𝜏(𝑃, 𝑃), 𝑔𝑎𝑏  = 𝜏(𝑎𝑃, 𝑏𝑃), 𝑔𝑐 =
𝜏(𝑃, 𝑐𝑃) and then gabc. Nothing else is known about the intractability of the BDHP, and the 

problem is generally assumed to be just as hard as the DHP in 𝐺1  and 𝐺𝜇 . We note that the 

decisional Diffie-Hellman problem (DDHP) in 𝐺1   can be efficiently solved. The DDHP is to 

decide whether a given quadruple (P, aP, bP, cP) of elements in 𝐺1   is a valid Diffie-Hellman 

quadruple, i.e., whether 𝑐𝑃 =  𝑎𝑏𝑃. This can be accomplished by computing 𝛾1 = 𝜏(P, 𝑐𝑃)  =
𝜏(𝑃, 𝑃)𝑐 and 𝛾2 = 𝜏(𝑎𝑃, 𝑏𝑃)  = 𝜏(𝑃, 𝑃)

𝑎𝑏; then 𝑐𝑃 =  𝑎𝑏𝑃 if and only if 𝛾1 = 𝛾2 . [7] 

There are three basic pairing-based protocols: 

1. Tripartite single-circuit key agreement. Joux's key agreement protocol [8], as modified by 

Verheul [9], uses bilinear matching on (𝐺1, 𝐺𝜇).for which BDHP is elusive. Sender A non-

randomly selects a secret integer 𝑎 ∈ [1, 𝑛 − 1] and transmits the point aP to the other two 

parties. At the same time B and C emit points bP and cP. After receiving bP and cP, A (and 

B and C) can compute the shared secret 

𝐾 =  𝜏(𝑏𝑃, 𝑐𝑃)𝑎 = 𝜏(𝑃, 𝑃)𝑎𝑏𝑐               (12) 

Joux's protocol can be generalized to a single-circuit protocol by using an efficiently computed 

key multilinear map 𝜏𝑛: 𝐺1
𝑖−1 → 𝐺𝜇 for which the following analog BDHP is irrational: given 

𝑃, 𝑎1𝑃, 𝑎2𝑃, . . . ,  𝑎𝐼𝑃, calculates 𝜏𝑛(𝑃, 𝑃, . . . , 𝑃)
𝑎1𝑎2···𝑎𝑖  . 

Joux's protocol serves as an elegant example of the potential of pairing in protocol design. 

2. Short signatures. Most discrete logarithmic signature schemes such as DSA are variants of 

the ElGamal signature scheme. The signatures consist of a pair of integers according to the 

model n, where n is the row of the basic group 𝐺1 = 〈𝑃〉. The first signature scheme was 

proposed by Boneh, Lynn and Shacham (BLS) [10] which signature consists of a single 

group element. 

3. Identity-based encryption. When using public key encryption to securely send a message 

to A, B encrypts the message using A's public key. And then it uses its corresponding 

private key to decrypt. B should be sure that he has an authentic copy of A's public key 

because otherwise an attacker could trick B into using the attacker's public key, and then 

he could decrypt B' these messages that were intended only for A. 

Definition 3.2.3. Let E be an elliptic curve defined over 𝐹𝑞, n is a prime divisor of #𝐸(𝐹𝑞) such 

that 𝑔𝑐𝑑(𝑛, 𝑞)  =  1, and k is the smallest positive integer such that 𝑛 | 𝑞𝑘 − 1. Parameters q,n 

and k should satisfy the following conditions:  

i. n should be large enough to make Pollard's rho method for computing discrete 

logarithms in the order-n subgroup 𝐸(𝐹𝑞) infeasible. 
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ii. k and should be large enough for index calculus methods to solve the DLP in 𝐹𝑞𝑘 is 

infeasible. 

iii. k should be small enough that the arithmetic in 𝐹𝑞𝑘  can be an efficient derivative. 

Some other conditions can be imposed on the elliptic curve parameters to speed up the 

computation of the Tate matching. 

The original goal of matching in cryptography was to solve the discrete logarithm problem. 

The matching moves the discrete problem from a subgroup over an elliptic curve to a discrete 

logarithm problem over a finite field. The interest is that the discrete logarithm problem is 

easier on finite fields compared to elliptic curves. Also in cryptosystems based on matching we 

have the MOV attack on the elliptic curve discrete logarithm problem [11]. 

In the interest of brevity of this paper, I will not go into further details of the matching of 

cryptosystems based on elliptic curves. 

4.0 LIE ALGEBRA 

Definition 4.1. A vector space V over a field F is a Lie algebra if there exists a bilinear 

multiplication 𝑉 × 𝑉 → 𝑉, with the operation denoted (𝑥, 𝑦) ↦ [𝑥𝑦], such that: 

1) It is skew symmetric where [𝑥, 𝑥]  =  0 for all x in V (this is equivalent to [𝑥, 𝑦]  =  −[ 𝑦, 𝑥] 
since the character is 𝐹 ≠  2). 

2) It satisfies the Jacobi identity [𝑥[𝑦𝑧] + 𝑦[𝑧, 𝑥] + 𝑧[𝑥, 𝑦]] = 0 (𝑥, 𝑦, 𝑧 ∈ 𝑉).[12] 

Example 4.2. We can show that the real vector space 𝑅 3is a Lie algebra. Recall the following 

properties of the cross product when a ,b and c are arbitrary vectors and α,β and γ are arbitrary 

scalars: 

1. 𝑎 × 𝑏 = −(𝑏 × 𝑎) 

2. 𝛼𝑥(𝛽𝑏 + 𝛾𝑐) = 𝛽(𝑎 × 𝑏) + 𝛾(𝑎 × 𝑐) i 

(𝛼𝑎 + 𝛽𝑏)𝑥𝑐 = 𝛼(𝑎 × 𝑐) + 𝛽(𝑏 × 𝑐) 

Proof. Note, 𝑎𝑥𝑎 =  −(𝑎𝑥𝑎), by property (1), letting 𝑏 =  𝑎 , so 𝑎 ×  𝑎 =  0. According to 

the above properties, the cross product is both skew symmetric (property 1) and bilinear 

(property 2) .Vector triple product expansion: 𝑥 × ( 𝑦 ×  𝑧)  =  𝑦 (𝑥 ×  𝑧)  −  𝑧 (𝑥 ×  𝑦) . To 

show that the cross product satisfies the Jacobi identity, we have: 

[𝑥[𝑦𝑧] + 𝑦[𝑧, 𝑥] + 𝑧[𝑥, 𝑦]] = 𝑥 × (𝑦 × 𝑧) + 𝑦 × (𝑧 × 𝑥) + 𝑧 × (𝑥 × 𝑦) 

= [𝑦(𝑥 ∗ 𝑧) − 𝑧(𝑥 ∗ 𝑦)] + [𝑧(𝑥 ∗ 𝑦) − 𝑥(𝑦 ∗ 𝑧)] + [𝑥(𝑧 ∗ 𝑦) − 𝑦(𝑧 ∗ 𝑥)] = 0 

Example 4.3. L is itself a left L-module. 

The left action of L on L is defined as 𝑥 ⋅  𝑦 =  [𝑥𝑦] Then we have 
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[[𝑥𝑦]𝑧] = [𝑥[𝑦𝑧]] − [𝑦[𝑥𝑧]] 

which is a consequence of the Jacobi identity. This shows that L is a left L-module. This is 

called a coupled module. We define  𝑎𝑑𝑥 ∶  𝐿 →  𝐿 by 

𝑎𝑑 𝑥 · 𝑦 = [𝑥𝑦] za 𝑥, 𝑦 ∈ 𝐿 

Then we have 

𝑎𝑑[𝑥𝑦] = 𝑎𝑑 𝑥 𝑎𝑑 𝑦 − 𝑎𝑑 𝑦 𝑎𝑑 𝑥 

Now let V be a left L-module, U is a subspace of V and H a subspace of L. We define HU as 

the subspace of V covered by all elements of the form xu for 𝑥 ∈  𝐻, 𝑢 ∈ 𝑈 . 

Proposition 4.4: Let 𝑔 be any Lie algebra. For any 𝑥 ∈  𝑔, define a linear transformation 

𝑎𝑑𝑔(𝑥): 𝑔 → 𝑔: 𝑦 → [𝑥, 𝑦] 

Then 𝑎𝑑𝑔 ∶  𝑔 →  𝑔𝑙(𝑔) is the representation of g on g itself.  

Proof: Clearly 𝑎𝑑𝑔 is a linear map. We need to show that 

𝑎𝑑𝑔([𝑥, 𝑦]) = [𝑎𝑑𝑔(𝑥), 𝑎𝑑𝑔(𝑦)] 

For all 𝑥, 𝑦 ∈  𝑔, ie that 

[[𝑥, 𝑦], 𝑧] =  [𝑥, [𝑦, 𝑧]] − [𝑦, [𝑥, 𝑧]] 

For all 𝑥, 𝑦, 𝑧 ∈  𝑔. 

This, however, is only a form of Jacobian identity. 

Definition 4.5- [13] The map 𝐿 →  𝐷𝑒𝑟𝐿 that sends x to 𝑎𝑑𝑥 is called an adjoint representation 

of L. This is similar to taking an ad homomorphism from 𝑔 → 𝑔𝑙(𝑔). The representation ad is 

a homomorphism:  

𝑎𝑑([𝑥;𝑦]) = [𝑎𝑑(𝑥), 𝑎𝑑(𝑦)] =  𝑎𝑑(𝑥)𝑎𝑑(𝑦) − 𝑎𝑑(𝑦)𝑎𝑑(𝑥) 

[[𝑥, 𝑦];  𝑧] =  [𝑥, [𝑦, 𝑧]] − [𝑦, [𝑥, 𝑧]] 

0 =  [𝑥, [𝑦, 𝑧]]  +  [𝑦, [𝑧, 𝑥]]  +  [𝑧, [𝑥, 𝑦]] 

That is, if and only if the Jacobi identity is satisfied, where 𝑥, 𝑦, 𝑧 =  −[𝑧, [𝑥, 𝑦]] i 

−[𝑦; [𝑥, 𝑧]]  =  [𝑦, [𝑧, 𝑥]] by oblique symmetry. 

Example 4.6:[13]  The set of all internal derivatives 𝑎𝑑𝑥, 𝑥 ∈ 𝐿, is an ideal for 𝐷𝑒𝑟(𝐿). Let 𝛿 ∈
𝐷𝑒𝑟(𝐿). By definition of inner derivatives, for all 𝑦 ∈ 𝐿:  
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[𝛿, 𝑎𝑑𝑥](𝑦) = (𝛿(𝑎𝑑𝑥) − (𝑎𝑑𝑥)𝛿)(𝑦) = 𝛿[𝑥, 𝑦] − 𝑎𝑑𝑥(𝛿(𝑦)) 

= [𝛿(𝑥), 𝑦] + [𝑥, 𝛿(𝑦)] − [𝑥, 𝛿(𝑦)] 

= 𝑎𝑑(𝛿(𝑥)𝑦) 

So, 𝑎𝑑𝑥 is an ideal of 𝐷𝑒𝑟 (𝐿) . 

Definition 4.7. Let L be a finite-dimensional Lie algebra over F. We define a map 

𝐿 × 𝐿 → 𝐹 

𝑥, 𝑦 → 〈𝑥, 𝑦〉 

gives 

〈𝑥, 𝑦〉 = 𝑡𝑟(𝑎𝑑(𝑥) 𝑎𝑑(𝑦)) 

for 𝑥, 𝑦 ∈  𝐿 . We call the Killing form on L . 

Proposal 4.8. Let L be a finite-dimensional Lie algebra over F. The Killing form on L is a 

symmetric bilinear form. Moreover, we have 

〈[𝑥𝑦], 𝑧〉 = 〈𝑥, [𝑦𝑧]〉 

Proof: 

〈[𝑥𝑦], 𝑧〉 = 𝑡𝑟(𝑎𝑑[𝑥𝑦]𝑎𝑑(𝑧)) = 𝑡𝑟 ((𝑎𝑑(𝑥)𝑎𝑑(𝑦) − 𝑎𝑑(𝑦)𝑎𝑑(𝑥))𝑎𝑑(𝑧)) 

𝑡𝑟(𝑎𝑑(𝑥)𝑎𝑑(𝑦)𝑎𝑑(𝑧)) − 𝑡𝑟(𝑎𝑑(𝑦)𝑎𝑑(𝑥)𝑎𝑑(𝑧)) 

𝑡𝑟(𝑎𝑑(𝑥)𝑎𝑑(𝑦)𝑎𝑑(𝑧)) − 𝑡𝑟(𝑎𝑑(𝑥)𝑎𝑑(𝑧)𝑎𝑑(𝑦)) 

𝑡𝑟(𝑎𝑑(𝑥)(𝑎𝑑(𝑦)𝑎𝑑(𝑧) − 𝑎𝑑(𝑧)𝑎𝑑(𝑦))) 

𝑡𝑟(𝑎𝑑(𝑥)𝑎𝑑[𝑦𝑧]) = 〈𝑥, [𝑦𝑧]〉 

Lemma 4.9: [14] Let F have characteristic zero and let it be algebraically closed. Let n be a 

positive integer. For 𝑥, 𝑦 ∈ 𝑔𝑙 (𝑛, 𝐹) define 

𝑡(𝑥, 𝑦)  =  𝑡𝑟(𝑥𝑦) 

The function  𝑡 ∶  𝑔𝑙(𝑛, 𝐹) ×  𝑔𝑙(𝑛, 𝐹) → 𝐹 is an associative, symmetric bilinear form. If L is 

a Lie subalgebra of 𝑔𝑙(𝑛, 𝐹), L is simple, and the limit t on 𝐿 ×  𝐿 is nonzero, then L is not 

degenerate.  

Proof: Clearly, t is F-linear in each variable. Also, t is symmetric because 𝑡𝑟 (𝑥𝑦)  =  𝑡𝑟 ( 𝑦𝑥) 
for 𝑥, 𝑦 ∈ 𝑔𝑙(𝑛, 𝐹) . To see that t is associative, let 𝑥, 𝑦, 𝑧 ∈ 𝑔𝑙 (𝑛, 𝐹) . Then 
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𝑡(𝑥, [𝑦, 𝑧])  =  𝑡𝑟(𝑥(𝑦𝑧 − 𝑧𝑦)) 

=  𝑡𝑟(𝑥𝑦𝑧) −  𝑡𝑟(𝑥𝑧𝑦) 

=  𝑡𝑟(𝑥𝑦𝑧) −  𝑡𝑟(𝑦𝑥𝑧) 

=  𝑡𝑟((𝑥𝑦 −  𝑦𝑥)𝑧) 

=  𝑡([𝑥, 𝑦], 𝑧) 

Suppose that L is a subalgebra of gl(n,F), L is simple, and the limit t on 𝐿 ×  𝐿 is nonzero.. Let 

𝐽 = 𝑦 ∈ 𝐿 ∶  𝑡(𝑥, 𝑦)  =  0, 𝑥 ∈ 𝐿. We have to prove that J = 0. We claim that J is an ideal of L. 

Let 𝑦 ∈ 𝐿 and 𝑧 ∈ 𝐽, we have to see that [𝑦, 𝑧] ∈ 𝐽. Let 𝑥 ∈ 𝐿. Now 𝑡(𝑥, [𝑦, 𝑧])  =  𝑡(𝑥, 𝑦, 𝑧) =
0 because 𝑧 ∈  𝐽. 

Definition 4.10. Let G be a Lie algebra over F. Consider the following set of ideals: 

𝐺 ⊃ 𝐺′ = [𝐺, 𝐺] ⊃ (𝐺′)′ = [𝐺′, 𝐺′] ⊃ ((𝐺′)′)′ = [(𝐺′)′, (𝐺′)′] … .. 

Each member of the sequence is an ideal of G; consecutive quotients are abelian. To improve 

the notation, we have  

𝐺0 = 𝐺, 

𝐺1 = [𝐺𝐺] = 𝐺′, 

𝐺2 = [𝐺𝐺1] = (𝐺′)′, 

……………. 

𝐺𝑖 = [𝐺𝐺𝑖−1] 

𝐺𝑖+1 = (𝐺𝑖)
′
 

……………… 

Then we have 

𝐺 = 𝐺0 ⊇ 𝐺1 ⊇ 𝐺2 ⊇ ⋯𝐺𝑛 = 0. 

This is called a derived sequence G. Given a Lie algebra G and sequence length 𝑛 >  0, we 

say that G is solvable if 𝐺(𝑛) = 0, that is, a Lie algebra is solvable if its derived sequence ends 

by the zero subalgebra. 

Let G be a Lie algebra and we have an ideal I 

[𝐺, 𝐼1] = [𝐺, [𝐼, 𝐼]] ⊆ [𝐼, [𝐼, 𝐺]] + [𝐼, [𝐺, 𝐼]] ⊆ [𝐼, 𝐼] + [𝐼, 𝐼] = 𝐼1 
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Therefore, if I is an ideal of G, then so is  𝐼1. Unless otherwise stated. 

Lemma 4.11. A Lie algebra G is solvable if and only if its derivative sequence ends at zero. 

Proof. If the derived sequence ends in zero, then it is a solvable sequence. Conversely, if 

𝐺 = 𝐺0 ⊇ 𝐺1 ⊇ 𝐺2 ⊇ ⋯𝐺𝑛 = 0. 

is a solvable sequence, then 𝐺1 ⊇ 𝐺′ because 𝐺/𝐺1 is commutative, 𝐺2 ⊇ (𝐺1)′ ⊇ 𝐺′′ because 

𝐺1 = 𝐺2 is also commutative , and so on until 0 = 𝐺𝑛. 

Example 4.12. G is solvable if and only if there exists a chain of subalgebras 𝐺 =  𝐺0 ⊃ 𝐺1 ⊃
⋯ ⊃ 𝐺𝑛 =  0 such that: 

 𝐺𝑛+1 is an ideal of 𝐺𝑛. 

 Every quotient of  𝐺𝑛/ 𝐺𝑛+1 is abelian. 

Proof:  

 If G is solvable, there exists a set of ideals for G such that 𝐺 ⊇  𝐺1 ⊇ ⋯ ⊇ 𝐺𝑛 = 0 for 

some n. By definition, every ideal forms a subalgebra of G. Therefore , 𝐺𝑛+1 ⊆ 𝐺𝑛 , 

where 𝐺𝑛+1 and  𝐺𝑛 are ideals of G. 

 Let   𝐺𝑛+1 be an ideal of 𝐺𝑛 ⊆  𝐺, 𝐺𝑛+1 is an ideal of G. if G is solvable, then by the 

definition of a subnormal sequence, every quotient of 𝐺𝑛/𝐺𝑛+1 is abelian. Derived 

sequences by definition 𝐺𝑛+1 = [𝐺𝑛, 𝐺𝑛]. Let [𝑥, 𝑦] ∈ 𝐺𝑛+1 with 𝑥, 𝑦 ∈ 𝐺𝑛 : 

[𝑥 + 𝐺𝑛+1, 𝑦 + 𝐺𝑛+1] = [𝑥, 𝑦] + [𝑥 + 𝐺𝑛+1] + [𝐺𝑛+1, 𝑦] + [𝐺𝑛+1, 𝐺𝑛+1] 

[𝑥 + 𝐺𝑛+1, 𝑦 + 𝐺𝑛+1] = [𝑥, 𝑦] + 𝐺𝑛+1 

Therefore 𝐺𝑛/𝐺𝑛+1 is abelian. 

Example 4.12. Lie groups 𝐺 = 𝑇𝑛(𝐹) of nonsingular upper triangular matrices over fields F. 

If A and B are upper triangular matrices 

𝐴 = (

𝑎1 ∗
0 𝑎2
⋮
0

⋮ ⋱ ⋮
𝑎𝑛

),  𝐵 = (

𝑏1 ∗
0 𝑏2
⋮
0

⋮ ⋱ ⋮
𝑏𝑛

) 

then the product AB has the form 

𝐴𝐵 = (

𝑎1𝑏1 ∗
0 𝑎2𝑏2
⋮
0

⋮ ⋱ ⋮
𝑎𝑛𝑏𝑛

) 
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𝐵𝐴 = (

𝑏1𝑎1 ∗
0 𝑏2𝑎2
⋮
0

⋮ ⋱ ⋮
𝑏𝑛𝑎𝑛

) 

Therefore, the commutator 𝐴𝐵 − 𝐵𝐴 is strictly upper triangle 

𝐴𝐵 − 𝐵𝐴 = (

𝑎1𝑏1 ∗
0 𝑎2𝑏2
⋮
0

⋮ ⋱ ⋮
𝑎𝑛𝑏𝑛

) − (

𝑏1𝑎1 ∗
0 𝑏2𝑎2
⋮
0

⋮ ⋱ ⋮
𝑏𝑛𝑎𝑛

)

= (

0 ∗
0 0
⋮
0

⋮ ⋱ ⋮
0

) 

The elements of G′ consist of strictly upper triangular matrices. We see that the elements of the 

G′′ matrix whose entries are 0 below the diagonal are 2 steps above the main diagonal; that is, 

G′′ consists of matrices 𝑎𝑖𝑗 such that  𝑎𝑖𝑗  =  0 whenever 𝑖 ≥  𝑗 −  1. In general, 𝐺𝑖 matrices 

have 0 below the diagonal  2𝑖−1 steps above the main diagonal. 

Let 𝐸𝑖𝑗   be an 𝑛 ×  𝑛 matrix whose (𝑖, 𝑗) entry is 1 and all other entries are 0. 

𝐸𝑖𝑗 satisfy the multiplication rules, 

𝐸𝑖𝑗𝐸𝑘𝑙 = 𝛾𝑗𝑘𝐸𝑖𝑙 

and so 

[𝐸𝑖𝑗𝐸𝑘𝑙] = 𝐸𝑖𝑗𝐸𝑘𝑙 − 𝐸𝑘𝑙𝐸𝑖𝑗 = 𝛾𝑗𝑘𝐸𝑖𝑙 − 𝛾𝑙𝑖𝐸𝑘𝑗 

𝑇𝑛(𝐹) =⊕ (𝐹𝐸𝑖𝑗) 

           𝑖 ≤ 𝑗 

Let 𝐺𝑟 denote the subspace   𝑇𝑛(𝐹) consisting of those matrices whose entries below the 

diagonal are r steps above the main diagonal 0. Then 

𝐺𝑟(𝐹) =⊕ (𝐹𝐸𝑘𝑙) 

                  𝑘 ≤  𝑙 − 𝑟 

For 𝑟 ≥  1 we will show that if 𝐸𝑖𝑗  and 𝐸𝑘𝑙 are in  𝐺𝑟, then  [𝐸𝑖𝑗𝐸𝑘𝑙]  ∈  𝐺𝑟+1. The matrix 

product 𝐸𝑖𝑗𝐸𝑘𝑙  lies in 𝐺𝑟+1. 𝐸𝑖𝑗𝐸𝑘𝑙 is nonzero if and only if 𝑗 =  𝑘, in which case the product 

is 𝐸𝑖𝑙. But this means that  𝑖 ≤  𝑗 − 𝑟 =  𝑘 − 𝑟 ≤  𝑙 − 2𝑟 ≤  𝑙 − (𝑟 + 1), since  𝑟 ≥  1. 

So 𝐸𝑖𝑙  ∈ 𝐺𝑟+1. It is shown that for all 𝑟 ≥  0 [𝐺𝑟 , 𝐺𝑟]  ⊂  𝐺𝑟+1, and therefore  𝐺 =  𝑇𝑛(𝐹) is 

also solvable. 
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5.0 PAIRING LIE ALGEBRA WITH CRYPTOGRAPHY 

Let E be an elliptic curve defined over a finite field 𝐹𝑝 with a prime order subgroup G, and let 

P and Q be points on E, and the Lie algebra associated with E is generated by tangent vectors 

at the identity element. A Weil pairing on Lie algebra is defined as 𝜏: 𝐺 × 𝐺 → 𝐹
𝑝𝑘
∗ , where k is 

the embedding degree.  

For points P and Q in G, the Weil pairing is calculated as: 𝜏(𝑃, 𝑄) = 𝜁𝑟
𝑡𝑟𝑎𝑐𝑒(𝛼𝑃, 𝑄) where 𝜁𝑟 

is a primitive 𝑟−th root of unity, 𝛼𝑃,𝑄 is the rational function associated with divisor (𝑃) −

(𝑂) − (𝑄) + (𝑃 + 𝑄).  

This is general structure of a Lie Algebra Symmetric Bilinear Pairing, specifically the Weil 

pairing on elliptic curves. The actual implementation details and security considerations can be 

more complex and often involve additional parameters and operations.  

It's important to note that cryptographic protocols using such pairings should be designed and 

implemented carefully to ensure security against various attacks.[14]. 

Proposal 5.1. A scheme based on identity encryption using symmetric bilinear matching Lie 

algebra. 

First of all, one should choose a safe elliptic curve E defined over a finite field 𝐹𝑝 with a 

symmetric bilinear pair  𝜏: 𝐺 × 𝐺 → 𝐹
𝑝𝑘
∗  , where G is a subgroup of E. After that, one should 

fix the public parameters including the equation of the elliptic curve, generating point and 

matching function τ. The master key  𝑔 ∈ 𝑍𝑞 should be generated as a random element in the 

subgroup q of G. Then the master key should be calculated as gG. The user must then register 

where his public identity such as an email address can be used as input to a cryptographic hash 

function to obtain the point 𝑃𝑖 for the elliptic curve. After that, the user calculates his private 

key as 𝐷𝑘 = 𝑔𝑃𝑖 where g is the master key and  𝑃𝑖 is a point derived from his identity. To 

encrypt a message M, the sender randomly chooses 𝑟𝜖𝑍𝑞 and calculates the ciphertext as 𝐶 =

𝑀⨁𝜏(𝑃𝑖, 𝑟𝐺)[15] 

To decrypt the ciphertext C, the user computes the matching 𝜏(𝐷𝑘, 𝑟𝐺) and uses it to recover 

the original message M as: 𝑀 = 𝐶 ⊕ 𝜏(𝐷𝑘, 𝑟𝐺).  

Creating a complete implementation of a symmetric bilinear elliptic curve and its associated 

Lie algebra for cryptography and key exchange involves multiple steps, and the code can be 

quite extensive. Below is a simplified example of using Python and the pycryptodome library 

for cryptographic operations. 

from Crypto.Util.number import getPrime  

from sympy import mod_inverse  

from hashlib import sha256  

class EllipticCurvePoint:  
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def __init__(self, x, y, a, b, p):  

self.x = x  

self.y = y  

self.a = a  

self.b = b  

self.p = p  

def __add__(self, other):  

if self == EllipticCurvePoint.infinity():  

return other  

if other == EllipticCurvePoint.infinity():  

return self  

if self.x == other.x and self.y != other.y:  

return EllipticCurvePoint.infinity()  

if self != other:  

m = (other.y - self.y) * mod_inverse(other.x - self.x, self.p)  

else:  

m = (3 * self.x**2 + self.a) * mod_inverse(2 * self.y, self.p)  

x3 = (m**2 - self.x - other.x) % self.p  

y3 = (m * (self.x - x3) - self.y) % self.p  

return EllipticCurvePoint(x3, y3, self.a, self.b, self.p)  

def __eq__(self, other):  

return self.x == other.x and self.y == other.y  

@staticmethod  

def infinity():  

return EllipticCurvePoint(None, None, None, None, None)  
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class SymmetricBilinearPairing:  

def __init__(self, G, p):  

self.G = G  

self.p = p  

def pairing(self, P, Q):  

if P == EllipticCurvePoint.infinity() or Q == EllipticCurvePoint.infinity():  

return 1  

e = pow((P.y * Q.y) % self.p, ((P.x * Q.x) % self.p + (P.x * Q.x) % self.p) // 2, self.p)  

return e  

# Example usage  

if __name__ == "__main__":  

# Define elliptic curve parameters  

a = 2  

b = 2  

p = get Prime (128)  

# Choose a base point on the curve  

G = EllipticCurvePoint(3, 5, a, b, p)  

# A's private key  

al_private_key = 123 

# Compute A's public key  

a_public_key = G  

for _ in range(a_private_key - 1):  

a_public_key += G  

# B's private key  

b_private_key = 456  
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# Compute B's public key  

b_public_key = G  

for _ in range(b_private_key - 1):  

b_public_key += G  

# Symmetric bilinear pairing  

pairing = SymmetricBilinearPairing(G, p)  

# Shared secret computation  

shared_secret_a = pairing.pairing(b_public_key, a_public_key)  

shared_secret_b = pairing.pairing(a_public_key, b_public_key)  

# Check if shared secrets match  

assert shared_secret_a == shared_secret_b  

# Derive a key from the shared secret using a hash function (e.g., SHA-256)  

derived_key = sha256(str(shared_secret_a).encode()).digest()  

print("Shared secret:", shared_secret_a)  

print("Derived key:", derived_key)  [15] 

Lemma 5.2.  For 𝑥, 𝑦 ∈  𝐵, we have je [x,x] = 0 and [𝑥, [𝑦, 𝑧]] + [𝑦, [𝑧, 𝑥]] + [𝑧, [𝑥, 𝑦]] =  0. 

Proof. Let 𝑥 ∈  𝑉𝑖, 𝑦 ∈ 𝑉𝑗 and  𝑧 ∈ 𝑉𝑘. Let 𝑔 ∈ 𝑘𝑖(𝐺),  ℎ ∈ 𝑘𝑗(𝐺) and 𝑛 ∈ 𝑘𝑝(𝐺) be preimages 

for x under 𝑇𝑖, y under 𝑇𝑗 and z under 𝑇𝑝. Then 

[𝑥, 𝑥]  =  𝑇2𝑖((𝑙, 𝑙))  =  𝑇2𝑖(1) = 0 𝑖 

[𝑥, [𝑦, 𝑧]] + [𝑦, [𝑧, 𝑥]] + [𝑧, [𝑥, 𝑦]] = [𝑥, (𝑇𝑗+𝑝(𝑚, 𝑛)] + [𝑦, (𝑇𝑖+𝑝(𝑙, 𝑛)] + [𝑧, (𝑇𝑖+𝑗(𝑙,𝑚)] 

 =  𝑇𝑗+𝑝((𝑚, 𝑛)) + 𝑇𝑗+𝑝((𝑛,𝑚)) + 𝑇𝑖+𝑝((𝑙, 𝑛)) + 𝑇𝑖+𝑝((𝑛, 𝑙)) + 𝑇𝑖+𝑗((𝑙,𝑚))

+ 𝑇𝑖+𝑗((𝑚, 𝑙)) 

 = 𝑇𝑗+𝑝((𝑚, 𝑛)(𝑛,𝑚)) + 𝑇𝑖+𝑝((𝑙, 𝑛)(𝑛, 𝑙)) + 𝑇𝑖+𝑗((𝑙,𝑚)(𝑚, 𝑙))

=  𝑇𝑗+𝑝(1) + 𝑇𝑖+𝑝(1) + 𝑇𝑖+𝑗(1) 

0 + 0 + 0 = 0 

Lemma 5.3.  For 𝑥1, 𝑥2, 𝑥3𝑥4 ∈ 𝐿, we have 
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[𝒙𝟏, [𝒙𝟐, [𝒙𝟑, 𝒙𝟒]]] + [𝒙𝟐, [𝒙𝟑,[𝒙𝟒, 𝒙𝟏]]] + [𝒙𝟑, [𝒙𝟒,[𝒙𝟏, 𝒙𝟐]]] + [𝒙𝟒, [𝒙𝟏, [𝒙𝟐, 𝒙𝟑]]] =  𝟎 

Proof. Assume that 𝑥𝑖 ∈ 𝑉𝑚𝑖
 for 𝑖 =  1,2,3. 4. Let 𝑔𝑖 ∈ 𝑘𝑚𝑖

(𝐺) be the preimage of 𝑥𝑖 

under 𝑇𝑖 for i = 1; 2; 3;4. 

Then 

[𝒙𝟏, [𝒙𝟐, [𝒙𝟑, 𝒙𝟒]]] + [𝒙𝟐, [𝒙𝟑,[𝒙𝟒, 𝒙𝟏]]] + [𝒙𝟑, [𝒙𝟒,[𝒙𝟏, 𝒙𝟐]]] + [𝒙𝟒, [𝒙𝟏, [𝒙𝟐, 𝒙𝟑]]]   

= 𝑇𝑚1+𝑚2+𝑚3+𝑚4 ((𝑔1, (𝑔2, 𝑔3, 𝑔4))(𝑔2, (𝑔3, 𝑔4, 𝑔1))(𝑔3, (𝑔4, 𝑔1, 𝑔2))(𝑔4(𝑔1, 𝑔2, 𝑔3)) 

Now the result follows from the fact that 

 ((𝑔1, (𝑔2, 𝑔3, 𝑔4))(𝑔2, (𝑔3, 𝑔4, 𝑔1))(𝑔3, (𝑔4, 𝑔1, 𝑔2))(𝑔4(𝑔1, 𝑔2, 𝑔3))
∈ 𝑘𝑚1+𝑚2+𝑚3+𝑚4+1(𝐺): 

Corollary 5.4. With the product [ ;  ] ∶  𝐿 ×  𝐿 → 𝐿 vector space L becomes a Lie algebra. 

Example 5.5. [17]: Let G be the group generated by three elements 𝑔1,  𝑔2, 𝑔3 subject to the 

relations 

(𝑔2, 𝑔1)  =  𝑔3, (𝑔3, 𝑔1)  =  (𝑔3, 𝑔2)  =  1,𝑔1
2 = 𝑔2

2 = 𝑔3 and 𝑔3
2 = 1.  

The frst relation is the same as 𝑔2𝑔1 = 𝑔1𝑔2𝑔3, whereas the second and third relations allow 

us to rewrite any word in the generators to an expression of the form 𝑔1
∗1 𝑔2

∗2𝑔3
∗3(∗). 

Using the remaining relations, we can rewrite this to be a word of the form (*) where 0 ≤ 𝑖𝑘 ≤
1. Hence 

G contains 23 = 8 elements. The Jennings series of G is 𝑘1(𝐺) = 𝐺; 𝑘2(𝐺) = ⟨𝑔3⟩, and 

𝑘3(𝐺)  =  1. So 𝐺1 = 
𝐺

〈𝑔3〉
= 〈𝑔̅1, 𝑔̅2〉, where 𝑔̅2: 𝑔̅1 = 𝑔̅1𝑔̅2. Therefore 𝐺1 = {1, 𝑔̅1, 𝑔̅2, 𝑔̅1𝑔̅2} 

Let 𝑉1 be a 2-dimensional vector space over 𝐹2 spanned by {𝑒1,  𝑒2}. Let 𝜎1 ∶ 𝐺1  → 𝑉1 be the 

morphism given by 𝜎1(𝑔̅𝑖) = 𝑒𝑖, 𝑖 = 1,2 (so 𝜎(𝑔̅1𝑔̅2) = 𝑒1 + 𝑒2). Also we have that 𝐺2 =
⟨𝑔3⟩

1
=

{1, 𝑔3}. Let 𝑉2 be a 1-dimensional vector space over 𝐹2 spanned by 𝑒3. Then 𝜎2 ∶ 𝐺2  → 𝑉2 is 

given by 𝜎2(𝑔3) = 𝑒3. Now let 𝐿 =  𝑉1⨁ 𝑉2. We calculate the Lie product of 𝑒1 and 𝑒2: 

[𝑒1,  𝑒2]  =  𝑇2((𝑔1,  𝑔2))  =  𝑇2(𝑔3)  =  𝑒3: 

Similarly it can be seen that [𝑒1,  𝑒3] = [𝑒2,  𝑒3] =  0 

6.0 CONCLUSION AND FURTHER WORKS 

Our exploration of ECC using Lie algebras has shed light on the promising intersection 

between these two fields of mathematics and cryptography. Through our investigation, we have 

demonstrated the potential benefits and insights that Lie algebras offer in the realm of elliptic 

curve-based cryptographic systems. Firstly, we have shown that Lie algebras provide a rich 
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mathematical framework for understanding the underlying structures and symmetries inherent 

in elliptic curves. By leveraging Lie algebras, we gain deeper insights into the geometric 

properties of elliptic curves, which can be harnessed to enhance the security and efficiency of 

cryptographic protocols. 

Moreover, our analysis has revealed that Lie algebraic techniques can be applied to various 

aspects of elliptic curve cryptography, including key generation, encryption, and decryption 

processes. By integrating Lie algebraic methods into cryptographic algorithms, we can 

potentially improve computational efficiency, mitigate security vulnerabilities, and adapt to 

emerging threats in the digital landscape. Furthermore, our examination of practical 

implementations has demonstrated the feasibility of incorporating Lie algebraic concepts into 

existing elliptic curve cryptographic systems. While challenges and complexities exist in 

translating theoretical insights into practical applications, our findings suggest that Lie algebras 

hold promise as a valuable tool for advancing the state-of-the-art in cryptographic research and 

development. 

Overall, the convergence of elliptic curve cryptography and Lie algebras represents an exciting 

frontier in modern cryptography, with implications for a wide range of applications, including 

secure communication, digital signatures, and cryptographic protocols in emerging 

technologies such as blockchain and IoT (Internet of Things). 

Looking ahead, there are several avenues for further research and exploration in the field of 

elliptic curve cryptography using Lie algebras. Investigating techniques to optimize 

cryptographic algorithms based on Lie algebras for improved performance and scalability, 

particularly in resource-constrained environments such as IoT devices and mobile platforms. 

Conducting rigorous security analyses to assess the resilience of Lie algebra-based elliptic 

curve cryptographic schemes against known attacks and vulnerabilities, and exploring new 

cryptographic primitives and protocols inspired by Lie algebraic structures. Advocating for the 

integration of Lie algebraic techniques into cryptographic standards and protocols, and 

fostering collaboration between mathematicians, cryptographers, and industry stakeholders to 

promote widespread adoption of advanced cryptographic techniques. Exploring 

interdisciplinary collaborations between mathematicians, computer scientists, and experts in 

related fields to leverage insights from diverse domains and develop innovative approaches to 

cryptographic design and analysis. Promoting awareness and understanding of elliptic curve 

cryptography and Lie algebras through educational initiatives, workshops, and outreach 

programs aimed at students, researchers, and practitioners in academia and industry. By 

addressing these research challenges and opportunities, we can unlock new frontiers in 

cryptographic theory and practice, paving the way for enhanced security, privacy, and trust in 

the digital ecosystem. Through continued innovation and collaboration, we can harness the 

power of mathematics to advance the science of cryptography and address the evolving security 

challenges of the digital age. 
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